Clinical Focus ›› 2021, Vol. 36 ›› Issue (12): 1139-1143.doi: 10.3969/j.issn.1004-583X.2021.12.018
Previous Articles Next Articles
Received:
2021-08-06
Online:
2021-12-20
Published:
2021-12-24
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.12.018
[1] |
Swinkels M, Rijkers M, Voorberg J, et al. Emerging Concepts in immune thrombocytopenia[J]. Front Immunol, 2018, 9:880.
doi: 10.3389/fimmu.2018.00880 pmid: 29760702 |
[2] |
Li J, Ma S, Shao L, et al. Inflammation-related gene polymorphisms associated with primary immune thrombocytopenia[J]. Front Immunol, 2017, 8:744.
doi: 10.3389/fimmu.2017.00744 URL |
[3] |
Anis SK, Abdel Ghany EA, Mostafa NO, et al. The role of PTPN22 gene polymorphism in childhood immune thrombocytopenic purpura[J]. Blood Coagul Fibrinolysis, 2011, 22(6):521-525.
doi: 10.1097/MBC.0b013e328347b064 URL |
[4] | Moulis G, Palmaro A, Montastruc JL, et al. Epidemiology of incident immune thrombocytopenia: A nationwide population-based study in France[J]. Blood, 2014, 124(22):3308-3315. |
[5] |
Lee JY, Lee JH, Lee H, et al. Epidemiology and management of primary immune thrombocytopenia: A nationwide population-based study in Korea[J]. Thromb Res, 2017, 155:86-91.
doi: 10.1016/j.thromres.2017.05.010 URL |
[6] |
Rose NR. Negative selection, epitope mimicry and autoimmunity[J]. Curr Opin Immunol, 2017, 49:51-55.
doi: 10.1016/j.coi.2017.08.014 URL |
[7] |
Wu KH, Peng CT, Li TC, et al. Interleukin 4, interleukin 6 and interleukin 10 polymorphisms in children with acute and chronic immune thrombocytopenic purpura[J]. Br J Haematol, 2015, 128(6):849-852.
doi: 10.1111/bjh.2005.128.issue-6 URL |
[8] |
Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Br J Haematol, 2007, 136(2):309-314.
doi: 10.1111/bjh.2007.136.issue-2 URL |
[9] |
Rocha AM, De Souza C, Rocha GA, et al. IL1RN VNTR and IL2-330 polymorphic genes are independently associated with chronic immune thrombocytopenia[J]. Br J Haematol, 2010, 150(6):679-684.
doi: 10.1111/j.1365-2141.2010.08318.x URL |
[10] |
Pehlivan M, Okan V, Sever T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Platelets, 2011, 22(8):588-595.
doi: 10.3109/09537104.2011.577255 pmid: 21591983 |
[11] |
Saitoh T, Tsukamoto N, Koiso H, et al. Interleukin-17F gene polymorphism in patients with chronic immune thrombocytopenia[J]. Eur J Haematol, 2011, 87(3):253-258.
doi: 10.1111/ejh.2011.87.issue-3 URL |
[12] |
Bottini N, Musumeci L, Alonso A. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes[J]. Nat Genet, 2004, 36:337-338.
pmid: 15004560 |
[13] |
Gloria-Bottini F, Saccucci P, Manca-Bitti ML, et al. Type 1 diabetes mellitus. Comparison between the association with PTPN22 genotype and the association with ACP1-ADA1 joint genotype[J]. Diabetes Res Clin Pract, 2014, 106(1):e7-e9.
doi: 10.1016/j.diabres.2014.07.022 URL |
[14] |
Hill RJ, Zozulya S, Lu YL, et al. The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation[J]. Exp Hematol, 2002, 30(3):237-244.
doi: 10.1016/S0301-472X(01)00794-9 URL |
[15] |
Lioger B, Rollin J, Vayne C, et al. No impact of PTPN22, PTPRJ and ACP1 genes polymorphisms on the risk of immune thrombocytopenia in French adult patients[J]. Thromb Res, 2016, 144:76-78.
doi: 10.1016/j.thromres.2016.04.013 URL |
[16] |
Bottini N, Stefanini L, Williams S, et al. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP)[J]. J Biol Chem, 2002, 277(27):24220-24224.
doi: 10.1074/jbc.M202885200 pmid: 11976341 |
[17] |
Spina C, Saccucci P, Bottini E, et al. ACP1 genetic polymorphism and colon cancer[J]. Cancer Genet Cytogenet, 2008, 186(1):61-62.
doi: 10.1016/j.cancergencyto.2008.06.006 URL |
[18] | Bottini N, Bottini E, Gloria-Bottini F, et al. Low-molecular-weight protein tyrosine phosphatase and human disease: In search of biochemical mechanisms[J]. Arch Immunol Ther Exp (Warsz), 2002, 50(2):95-104. |
[19] |
Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response[J]. Blood, 2004, 103(7):2645-2647.
doi: 10.1182/blood-2003-07-2268 pmid: 14670926 |
[20] | Zhang D, Zhang X, Ge M, et al. The polymorphisms of T cell-specific TBX21 gene may contribute to the susceptibility of chronic immune thrombocytopenia in Chinese population[J]. Hum Immunol, 2014, 75(2):129-133. |
[21] |
Hodohara K, Fujii N, Yamamoto N, et al. Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK)[J]. Blood, 2000, 95(3):769-775.
pmid: 10648384 |
[22] |
Majka M, Janowska-Wieczorek A, Ratajczak J, et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis[J]. Blood, 2000, 96(13):4142-4151.
pmid: 11110685 |
[23] |
Ku FC, Tsai CR, der Wang J, et al. Stromal-derived factor-1 gene variations in pediatric patients with primary immune thrombocytopenia[J]. Eur J Haematol, 2013, 90(1):25-30.
doi: 10.1111/ejh.2012.90.issue-1 URL |
[24] |
Wang JD, Ou TT, Wang CJ, et al. Platelet apoptosis resistance and increased CXCR4 expression in pediatric patients with chronic immune thrombocytopenic purpura.[J]. Thromb Res, 2010, 126(4):311-318.
doi: 10.1016/j.thromres.2010.06.023 URL |
[25] |
Sarpatwari A, Bussel JB, Ahmed M, et al. Single nucleotide polymorphism (SNP) analysis demonstrates a significant association of tumour necrosis factor-alpha (TNFA) with primary immune thrombocytopenia among Caucasian adults[J]. Hematology, 2011, 16(4):243-248.
doi: 10.1179/102453311X13025568941808 pmid: 21756542 |
[26] |
Ji L, Zhan Y, Hua F, et al. The ratio of Treg/Th17 cells correlates with the disease activity of primary immune thrombocytopenia[J]. PLoS One, 2012, 7(12):e50909.
doi: 10.1371/journal.pone.0050909 URL |
[27] |
Zhu X, Ma D, Zhang J, et al. Elevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia[J]. J Clin Immunol, 2010, 30(2):253-259.
doi: 10.1007/s10875-009-9353-1 URL |
[28] |
Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF[J]. Science, 2001, 293(5537):2108-2111.
doi: 10.1126/science.1061965 pmid: 11509692 |
[29] |
Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Br J Haematol, 2007, 136(2):309-314.
doi: 10.1111/bjh.2007.136.issue-2 URL |
[30] |
Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex[J]. Blood, 2004, 103(6):2257-2265.
doi: 10.1182/blood-2003-08-2694 URL |
[31] |
Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches[J]. Immunity, 2004, 20(6):785-798.
doi: 10.1016/j.immuni.2004.05.010 URL |
[32] |
Pehlivan M, Okan V, Sever T, et al. Investigation of TNF-alpha, TGF-beta 1, IL-10, IL-6, IFN-gamma, MBL, GPIA, and IL1A gene polymorphisms in patients with idiopathic thrombocytopenic purpura[J]. Platelets, 2011, 22(8):588-595.
doi: 10.3109/09537104.2011.577255 pmid: 21591983 |
[33] |
Tesse R, Vecchio G, Mattia DD, et al. Association of interleukin-(IL)10 haplotypes and serum IL-10 levels in the progression of childhood immune thrombocytopenic purpura[J]. Gene, 2012, 505(1):53-56.
doi: 10.1016/j.gene.2012.05.050 URL |
[34] |
Xueyi L, Lina C, Zhenbiao W, et al. Levels of circulating Th17 cells and regulatory T cells in ankylosing spondylitis patients with an inadequate response to anti-TNF-γ therapy[J]. J Clin Immunol, 2013, 33(1):151-161.
doi: 10.1007/s10875-012-9774-0 pmid: 22926407 |
[35] | Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura[J]. Blood, 2008, 112(4):1325-1328. |
[36] |
Zhan Y, Hua F, Ji L, et al. Polymorphisms of the IL-23R gene are associated with primary immune thrombocytopenia but not with the clinical outcome of pulsed high-dose dexamethasone therapy[J]. Annals of Hematology, 2013, 92(8):1057-1062.
doi: 10.1007/s00277-013-1731-3 URL |
[37] |
Rezaeeyan H, Jaseb K, Alghasi A, et al. Association between gene polymorphisms and clinical features in idiopathic thrombocytopenic purpura patients[J]. Blood Coagul Fibrinolysis, 2017, 28(8):617-622.
doi: 10.1097/MBC.0000000000000646 URL |
[38] |
Amorim DM, Silveira Vda S, Scrideli CA, et al. Fcγ receptor gene polymorphisms in childhood immune thrombocytopenic purpura[J]. J Pediatr Hematol Oncol, 2012, 34(5):349-352.
doi: 10.1097/MPH.0b013e3182580908 URL |
[39] |
Wang D, Hu SL, Cheng XL, et al. FCGR2A rs1801274 polymorphism is associated with risk of childhood-onset idiopathic (immune) thrombocytopenic purpura: evidence from a meta-analysis[J]. Thromb Res, 2014, 134(6):1323-1327.
pmid: 25457587 |
[40] |
Papagianni A, Economou M, Tragiannidis A, et al. FcγRIIa and FcγRIIIa polymorphisms in childhood primary immune thrombocytopenia: Implications for disease pathogenesis and outcome[J]. Blood Coagul Fibrinolysis, 2013, 24(1):35-39.
doi: 10.1097/MBC.0b013e328359bc3b URL |
[41] |
Liu XG, Ren J, Yu Y, et al. Decreased expression of interleukin-27 in immune thrombocytopenia[J]. Br J Haematol, 2011, 153(2):259-267.
doi: 10.1111/bjh.2011.153.issue-2 URL |
[42] |
Cao J, Chen C, Li L, et al. Effects of high-dose dexamethasone on regulating interleukin-22 production and correcting Th1 and Th22 polarization in immune thrombocytopenia.[J]. J Clin Immunol, 2012, 32(3):523-529.
doi: 10.1007/s10875-012-9649-4 URL |
[43] |
Tao J, Yang M, Zhong C, et al. Decreased DNA methyltransferase 3A and 3B mRNA expression in peripheral blood mononuclear cells and increased plasma sah concentration in adult patients with idiopathic thrombocytopenic purpura[J]. J Clin Immunol, 2008, 28(5):432-439.
doi: 10.1007/s10875-008-9223-2 URL |
[44] | Pesmatzoglou M, Lourou M, Goulielmos GN, et al. DNA methyltransferase 3B gene promoter and interleukin-1 receptor antagonist polymorphisms in childhood immune thrombocytopenia[J]. Clin Dev Immunol, 2012, 2012:352059. |
[45] | Li JQ, Hu SY, Wang ZY, et al. MicroRNA-125-5p targeted CXCL13: A potential biomarker associated with immune thrombocytopenia[J]. Am J Transl Res, 2015, 7(4):772-780. |
[46] |
Li JQ, Hu SY, Wang ZY, et al. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura[J]. Biomed Pharmacother, 2016, 83:905-911.
doi: 10.1016/j.biopha.2016.07.057 URL |
[47] |
Gang D, Yu S, He Y, et al. MicroRNA profiling of platelets from immune thrombocytopenia and target gene prediction[J]. Mol Med Rep, 2017, 16(3):2835-2843.
doi: 10.3892/mmr.2017.6901 pmid: 28677771 |
[48] | Jernås M, Hou Y, Strömberg Célind F, et al. Differences in gene expression and cytokine levels between newly diagnosed and chronic pediatric ITP[J]. Blood, 2013, 122(10):1789-1792. |
[49] |
Berruyer C, Pouyet L, Millet V, et al. Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity[J]. J Exp Med, 2006, 203(13):2817-2827.
doi: 10.1084/jem.20061640 URL |
[50] |
Zhang B, Lo C, Shen L, et al. The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP[J]. Blood, 2011, 117(17):4569-4579.
doi: 10.1182/blood-2010-09-304931 pmid: 21325602 |
[51] |
Yacobovich J, Revel-Vilk S, Tamary H. Childhood immune thrombocytopenia--Who will spontaneously recover?[J]. Semin Hematol, 2013, 50(Suppl 1):S71-S74.
doi: 10.1053/j.seminhematol.2013.03.013 URL |
[1] | . [J]. Clinical Focus, 2023, 38(12): 1140-1145. |
[2] | Yang Jinqiang, Zhang Renmin. Prognostic value of procalcitonin to platelet ratio in patients with fever with thrombocytopenia syndrome [J]. Clinical Focus, 2023, 38(4): 346-351. |
[3] | Wu Qiong, Sun Feng, Zhang Kai, Wang Zhiyi, Zhang Nana, Cheng Hui, Xiang Yang, Chang Xiaohui. Curative effect of combination of eltrombopag and low-dose prednisone on refractory and relapsed primary immune thrombocytopenia in elderly patients [J]. Clinical Focus, 2022, 37(11): 1008-1011. |
[4] | Fu Haixia. Study on standardized diagnosis and treatment of primary immune thrombocytopenia [J]. Clinical Focus, 2021, 36(10): 896-900. |
[5] | Wang Jing;Li Ruibin;Cui Wei. Analysis of characteristics and risk factors of acute serious thrombocytopenia associated with tirofiban in Chinese patients [J]. Clinical Focus, 2015, 30(4): 361-366. |
[6] | PENG Jun. Advances in the treatment of refractory/relapsed immune thrombocytopenia [J]. Clinical Focus, 2014, 29(10): 1091-1094. |
[7] | . [J]. CLINICAL FOCUS, 2013, 28(11): 1292-1293. |
[8] | . [J]. Clinical Focus, 2012, 27(22): 0-0. |
[9] | . [J]. Clinical Focus, 2012, 27(20): 1833-1836. |
[10] | . [J]. Clinical Focus, 2012, 27(6): 547-0. |
[11] | . [J]. CLINICAL FOCUS, 2011, 26(11): 984-985. |
[12] | . [J]. CLINICAL FOCUS, 2011, 26(7): 604-605. |
[13] | KONG Rong;QIU Hong-chun;WU Peng-fei;WANG Yong. Significance of bone marrow megakaryocyte counts and platelet parameters in patients with idiopathic thrombocytopenic purpura [J]. CLINICAL FOCUS, 2011, 26(2): 104-107. |
[14] | . [J]. CLINICAL FOCUS, 2010, 25(20): 1815-1816. |
[15] | . [J]. CLINICAL FOCUS, 2010, 25(4): 359-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||