Clinical Focus ›› 2022, Vol. 37 ›› Issue (4): 379-384.doi: 10.3969/j.issn.1004-583X.2022.04.018
Received:
2021-12-10
Online:
2022-04-20
Published:
2022-05-13
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.04.018
NTHi独立致病因素 | 与人免疫系统的关系 |
---|---|
人补体抑制因子H | 补体激活替代途径的抑制剂,可以与Hi的外膜蛋白结合,减弱补体介导的对NTHi的杀伤作用[ |
外膜蛋白P4 | 是NTHi的玻连蛋白结合蛋白,可提高其在血清的存活率,提高了NTHi在人体中的存活率[ |
HMW和Hia蛋白 | 可以刺激抗体反应,与免疫应答的刺激有关[ |
IgA1P | 可以掩盖Hi荚膜多糖和其他表面抗原, 有助于逃避宿主的免疫反应。IgA1P的其他底物可以通过避免溶酶体降解来帮助细菌在上皮细胞中存活,可以通过抑制TNF-α的功能来逃避宿主免疫反应诱导的细胞凋亡[ |
LOS | 具有与人体鞘磷脂结构和抗原性相同的唾液酸末端,可以模拟宿主分子结构逃脱免疫细胞的吞噬和清除[ |
唾液酸 | 唾液酸Neu5Ac的掺入除了能提高对血清中抗体的抵抗力,还阻止了半乳糖在庚糖Ⅲ(heptose Ⅲ,Hep Ⅲ)上的识别,从而减少了IgM与细菌表面的结合[ |
PV | PV中基因oafA 表达是抵抗宿主免疫系统对补体介导的杀伤作用所必需的[ |
磷脂酰胆碱 | 在NTHi的LOS中存在的磷脂酰胆碱减少了肺上皮细胞释放IL-1b,从而抑制了炎症的发生,这可能在不触发免疫系统的情况下促进定植[ |
NTHi独立致病因素 | 与人免疫系统的关系 |
---|---|
人补体抑制因子H | 补体激活替代途径的抑制剂,可以与Hi的外膜蛋白结合,减弱补体介导的对NTHi的杀伤作用[ |
外膜蛋白P4 | 是NTHi的玻连蛋白结合蛋白,可提高其在血清的存活率,提高了NTHi在人体中的存活率[ |
HMW和Hia蛋白 | 可以刺激抗体反应,与免疫应答的刺激有关[ |
IgA1P | 可以掩盖Hi荚膜多糖和其他表面抗原, 有助于逃避宿主的免疫反应。IgA1P的其他底物可以通过避免溶酶体降解来帮助细菌在上皮细胞中存活,可以通过抑制TNF-α的功能来逃避宿主免疫反应诱导的细胞凋亡[ |
LOS | 具有与人体鞘磷脂结构和抗原性相同的唾液酸末端,可以模拟宿主分子结构逃脱免疫细胞的吞噬和清除[ |
唾液酸 | 唾液酸Neu5Ac的掺入除了能提高对血清中抗体的抵抗力,还阻止了半乳糖在庚糖Ⅲ(heptose Ⅲ,Hep Ⅲ)上的识别,从而减少了IgM与细菌表面的结合[ |
PV | PV中基因oafA 表达是抵抗宿主免疫系统对补体介导的杀伤作用所必需的[ |
磷脂酰胆碱 | 在NTHi的LOS中存在的磷脂酰胆碱减少了肺上皮细胞释放IL-1b,从而抑制了炎症的发生,这可能在不触发免疫系统的情况下促进定植[ |
[1] | Shimol SB, Dagan R. Haemophilus influenzae: Still a relevant invasive pathogen[J]. Isr Med Assoc J, 2012, 14(7): 432-434. |
[2] | Global Programme for Vaccines and Immunization (GPV). The WHO position paper on Haemophilus influenzae type b conjugate vaccines[J]. Wkly Epidemiol Rec, 1998, 73(10): 64-68. |
[3] | 田磊, 陈中举, 孙自镛. 生物Ⅰ型血清b型流感嗜血杆菌致化脓性关节炎1例[J]. 中国实验诊断学, 2019, 23(5): 900-902. |
[4] |
van Eldere J, Slack MP, Ladhani S. et al. Non-typeable Haemophilus influenzae, an under-recognised pathogen[J]. Lancet Infect Dis, 2014, 14(12): 1281-1292.
doi: 10.1016/S1473-3099(14)70734-0 pmid: 25012226 |
[5] |
Murphy TF, Faden H, Bakaletz LO. et al. Nontypeable Haemophilus influenzae as a pathogen in children[J]. Pediatr Infect Dis J, 2009, 28(1): 43-48.
doi: 10.1097/INF.0b013e318184dba2 URL |
[6] |
Sethi S, Evans N, Grant BJ. et al. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease[J]. N Engl J Med, 2002, 347(7): 465-471.
doi: 10.1056/NEJMoa012561 URL |
[7] |
Murphy TF, Brauer AL, Sethi S. et al. Haemophilus haemolyticus: A human respiratory tract commensal to be distinguished from Haemophilus influenzae[J]. J Infect Dis, 2007, 195(1): 81-89.
doi: 10.1086/509824 URL |
[8] |
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick[J]. Sci Am, 1978, 238(1): 86-95.
pmid: 635520 |
[9] |
Donlan RM, Costerton JW. Biofilms: Survival mechanisms of clinically relevant microorganisms[J]. Clin Microbiol Rev, 2002, 15(2): 167-193.
doi: 10.1128/CMR.15.2.167-193.2002 URL |
[10] |
Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9): 623-633.
doi: 10.1038/nrmicro2415 URL |
[11] |
Flemming HC, Baveye P, Neu TR. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond[J]. NPJ Biofilms Microbiomes, 2021, 7(1):10.
doi: 10.1038/s41522-020-00183-3 URL |
[12] |
Rocco CJ, Davey ME, Bakaletz LO. et al. Natural antigenic differences in the functionally equivalent extracellular DNABII proteins of bacterial biofilms provide a means for targeted biofilm therapeutics[J]. Mol Oral Microbiol, 2017, 32(2): 118-130.
doi: 10.1111/omi.12157 pmid: 26988714 |
[13] |
Srivastava S, Bhargava A. Biofilms and human health[J]. Biotechnol Lett, 2016, 38(1): 1-22.
doi: 10.1007/s10529-015-1960-8 pmid: 26386834 |
[14] | Brockman KL, Azzari PN, Branstool MT. et al. Epigenetic regulation alters biofilm architecture and composition in multiple clinical isolates of nontypeable Haemophilus influenzae[J]. mBio, 2018, 9(5):e01682-e01800. |
[15] |
Secor PR, Michaels LA, Ratjen A. et al. Entropically driven aggregation of bacteria by host polymers promotes antibiotic tolerance in Pseudomonas aeruginosa[J]. Proc Natl Acad Sci U S A, 2018, 115(42): 10780-10785.
doi: 10.1073/pnas.1806005115 URL |
[16] |
Yasir M, Willcox MDP, Dutta D. Action of antimicrobial peptides against bacterial biofilms[J]. Materials (Basel), 2018, 11(12):2468.
doi: 10.3390/ma11122468 URL |
[17] | Watters C, Fleming D, Bishop D. et al. Host responses to biofilm[J]. Prog Mol Biol Transl Sci, 2016, 142:193-239. |
[18] |
Randal Bollinger R, Barbas AS, Bush EL. et al. Biofilms in the large bowel suggest an apparent function of the human vermiform appendix[J]. J Theor Biol, 2007, 249(4): 826-831.
pmid: 17936308 |
[19] |
Langereis JD, Hermans PW. Novel concepts in nontypeable Haemophilus influenzae biofilm formation[J]. FEMS Microbiol Lett, 2013, 346(2): 81-89.
doi: 10.1111/1574-6968.12203 pmid: 23808954 |
[20] |
Mizrahi A, Cohen R, Varon E. et al. Non typable-Haemophilus influenzae biofilm formation and acute otitis media[J]. BMC Infect Dis, 2014, 14:400.
doi: 10.1186/1471-2334-14-400 pmid: 25037572 |
[21] |
Martinez-Resendez MF, Gonzalez-Chavez JM, Garza-Gonzalez E. et al. Non-typeable Haemophilus influenzae biofilm production and severity in lower respiratory tract infections in a tertiary hospital in Mexico[J]. J Med Microbiol, 2016, 65(12): 1385-1391.
doi: 10.1099/jmm.0.000369 URL |
[22] |
Baddal B. Characterization of biofilm formation and induction of apoptotic DNA fragmentation by nontypeable Haemophilus influenzae on polarized human airway epithelial cells[J]. Microb Pathog, 2020, 141:103985.
doi: 10.1016/j.micpath.2020.103985 URL |
[23] | Das J, Mokrzan E, Lakhani V. et al. Extracellular DNA and type Ⅳ pilus expression regulate the structure and kinetics of biofilm formation by nontypeable Haemophilus influenzae[J]. mBio, 2017, 8(6):e01466-e01700. |
[24] |
Devaraj A, Buzzo JR, Mashburn-Warren L. et al. The extracellular DNA lattice of bacterial biofilms is structurally related to Holliday junction recombination intermediates[J]. Proc Natl Acad Sci U S A, 2019, 116(50): 25068-25077.
doi: 10.1073/pnas.1909017116 URL |
[25] |
Devaraj A, Buzzo J, Rocco CJ. et al. The DNABII family of proteins is comprised of the only nucleoid associated proteins required for nontypeable Haemophilus influenzae biofilm structure[J]. Microbiologyopen, 2018, 7(3): e00563.
doi: 10.1002/mbo3.563 URL |
[26] |
Jones EA, Mcgillivary G, Bakaletz LO. Extracellular DNA within a nontypeable Haemophilus influenzae-induced biofilm binds human beta defensin-3 and reduces its antimicrobial activity[J]. J Innate Immun, 2013, 5(1): 24-38.
doi: 10.1159/000339961 pmid: 22922323 |
[27] |
Wassing GM, Lidberg K, Sigurlasdottir S. et al. DNA blocks the lethal effect of human beta-defensin 2 against Neisseria meningitidis[J]. Front Microbiol, 2021, 12:697232.
doi: 10.3389/fmicb.2021.697232 URL |
[28] |
Brockman KL, Jurcisek JA, Atack JM. et al. ModA2 phasevarion switching in nontypeable Haemophilus influenzae increases the severity of experimental otitis media[J]. J Infect Dis, 2016, 214(5): 817-824.
doi: 10.1093/infdis/jiw243 pmid: 27288538 |
[29] |
Brockman KL, Branstool MT, Atack JM. et al. The ModA2 phasevarion of nontypeable Haemophilus influenzae regulates resistance to oxidative stress and killing by human neutrophils[J]. Sci Rep, 2017, 7(1):3161.
doi: 10.1038/s41598-017-03552-9 pmid: 28600561 |
[30] | Jackson MD, Wong SM, Akerley BJ. Underlying glycans determine the ability of sialylated lipooligosaccharide to protect nontypeable Haemophilus influenzae from serum IgM and complement[J]. Infect Immun, 2019, 87(11):e00456-e01900. |
[31] | Ng PSK, Day CJ, Atack JM. et al. Nontypeable Haemophilus influenzae has evolved preferential use of N-acetylneuraminic acid as a host adaptation[J]. mBio, 2019, 10(3):e00422-e01900. |
[32] |
Gallaher TK WuS, Webster P. et al. Identification of biofilm proteins in non-typeable Haemophilus influenzae[J]. BMC Microbiol, 2006, 6:65.
pmid: 16854240 |
[33] | Atack JM, Day CJ, Poole J. et al. The hontypeable Haemophilus influenzae major adhesin hia is a dual-function lectin that binds to human-specific respiratory tract sialic acid glycan receptors[J]. mBio, 2020, 11(6):e02714-20. |
[34] |
Maier B, Wong GCL. How bacteria use type Ⅳ pili machinery on surfaces[J]. Trends Microbiol, 2015, 23(12): 775-788.
doi: 10.1016/j.tim.2015.09.002 URL |
[35] |
Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili[J]. Res Microbiol, 2012, 163(9-10): 659-673.
doi: 10.1016/j.resmic.2012.10.015 URL |
[36] |
Piepenbrink KH. DNA uptake by type Ⅳ filaments[J]. Front Mol Biosci, 2019, 6:1.
doi: 10.3389/fmolb.2019.00001 pmid: 30805346 |
[37] |
Jacobsen T, Bardiaux B, Francetic O. et al. Structure and function of minor pilins of type Ⅳ pili[J]. Med Microbiol Immunol, 2020, 209(3): 301-308.
doi: 10.1007/s00430-019-00642-5 URL |
[38] | Pang B, Armbruster CE, Foster G. et al. Autoinducer 2 (AI-2) production by nontypeable Haemophilus influenzae 86-028NP promotes expression of a predicted glycosyltransferase that is a determinant of biofilm maturation, prevention of dispersal, and persistence in vivo[J]. Infect Immun, 2018, 86(12):e00506-e00518. |
[39] |
Wang W, Chanda W, Zhong M. The relationship between biofilm and outer membrane vesicles: A novel therapy overview[J]. FEMS Microbiol Lett, 2015, 362(15): fnv117.
doi: 10.1093/femsle/fnv117 URL |
[40] |
Choi DS, Kim DK, Kim YK. et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes[J]. Proteomics, 2013, 13(10-11): 1554-1571.
doi: 10.1002/pmic.201200329 URL |
[41] |
Mayr M, Grainger D, Mayr U. et al. Proteomics, metabolomics, and immunomics on microparticles derived from human atherosclerotic plaques[J]. Circ Cardiovasc Genet, 2009, 2(4): 379-388.
doi: 10.1161/CIRCGENETICS.108.842849 URL |
[42] |
Roier S, Zingl FG, Cakar F. et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria[J]. Nat Commun, 2016, 7:10515.
doi: 10.1038/ncomms10515 URL |
[43] |
Deknuydt F, Nordstrom T, Riesbeck K. Diversion of the host humoral response: A novel virulence mechanism of Haemophilus influenzae mediated via outer membrane vesicles[J]. J Leukoc Biol, 2014, 95(6): 983-991.
doi: 10.1189/jlb.1013527 URL |
[44] |
Paulsson M, Che KF, Ahl J. et al. Bacterial outer membrane vesicles induce vitronectin release into the bronchoalveolar space conferring protection from complement-mediated killing[J]. Front Microbiol, 2018, 9:1559.
doi: 10.3389/fmicb.2018.01559 pmid: 30061873 |
[45] |
Mirzaei R, Mohammadzadeh R, Sholeh M. et al. The importance of intracellular bacterial biofilm in infectious diseases[J]. Microb Pathog, 2020, 147:104393.
doi: 10.1016/j.micpath.2020.104393 URL |
[46] |
Hallstrom T, Zipfel PF, Blom AM. et al. Haemophilus influenzae interacts with the human complement inhibitor factor H[J]. J Immunol, 2008, 181(1): 537-545.
doi: 10.4049/jimmunol.181.1.537 URL |
[47] |
Ikeda M, Enomoto N, Hashimoto D. et al. Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells[J]. BMC Microbiol, 2015, 15:263.
doi: 10.1186/s12866-015-0600-8 URL |
[48] |
Su YC, Mukherjee O, Singh B. et al. Haemophilus influenzae P4 interacts with extracellular matrix proteins promoting adhesion and serum resistance[J]. J Infect Dis, 2016, 213(2): 314-323.
doi: 10.1093/infdis/jiv374 URL |
[49] |
Rempe KA, Porsch EA, Wilson JM. et al. The HMW1 and HMW2 adhesins enhance the ability of nontypeable Haemophilus influenzae to colonize the upper respiratory tract of rhesus macaques[J]. Infect Immun, 2016, 84(10): 2771-2778.
doi: 10.1128/IAI.00153-16 URL |
[50] |
Shehaj L, Choudary SK, Makwana KM. et al. Small-molecule inhibitors of Haemophilus influenzae IgA1 protease[J]. ACS Infect Dis, 2019, 5(7): 1129-1138.
doi: 10.1021/acsinfecdis.9b00004 pmid: 31016966 |
[51] |
Kostyanev TS, Sechanova LP. Virulence factors and mechanisms of antibiotic resistance of haemophilus influenzae[J]. Folia Med (Plovdiv), 2012, 54(1): 19-23.
pmid: 22908826 |
[52] | Phillips ZN, Brizuela C, Jennison AV. et al. Analysis of invasive nontypeable Haemophilus influenzae isolates reveals selection for the expression state of particular phase-Variable lipooligosaccharide biosynthetic genes[J]. Infect Immun, 2019, 87(5):e00093-19. |
[53] |
Richter K, Koch C, Perniss A. et al. Phosphocholine-modified lipooligosaccharides of Haemophilus influenzae inhibit ATP-induced IL-1beta release by pulmonary epithelial cells[J]. Molecules, 2018, 23(8):1979.
doi: 10.3390/molecules23081979 URL |
[54] |
Slack M, Esposito S, Haas H. et al. Haemophilus influenzae type b disease in the era of conjugate vaccines: Critical factors for successful eradication[J]. Expert Rev Vaccines, 2020, 19(10):903-917.
doi: 10.1080/14760584.2020.1825948 URL |
[55] | Mackenzie GA, Ulanova M. Invasive Haemophilus influenzae infections after 3 decades of Hib protein conjugate vaccine use[J]. Clin Microbiol Rev, 2021, 34(3):e0002821. |
[56] |
Yu YJ, Wang XH, Fan GC. Versatile effects of bacterium-released membrane vesicles on mammalian cells and infectious/inflammatory diseases[J]. Acta Pharmacol Sin, 2018, 39(4): 514-533.
doi: 10.1038/aps.2017.82 URL |
[57] | Bailey MT, Lauber CL, Novotny LA. et al. Immunization with a biofilm-disrupting nontypeable Haemophilus influenzae vaccine antigen did not alter the gut microbiome in chinchillas, unlike oral delivery of a broad-spectrum antibiotic commonly used for otitis media[J]. mSphere, 2020, 5(2):e00296-e02000. |
[58] |
Langereis JD, de Jonge MI. Unraveling Haemophilus influenzae virulence mechanisms enable discovery of new targets for antimicrobials and vaccines[J]. Curr Opin Infect Dis, 2020, 33(3):231-237.
doi: 10.1097/QCO.0000000000000645 pmid: 32304471 |
[59] | 何萍, 丰涛, 徐俊, 等. 苏州地区2013-2018年肺炎住院患儿肺泡灌洗液的病原菌分布及耐药特征分析[J]. 临床荟萃, 2019, 34(9):809-813. |
[60] |
Mokrzan EM, Ahearn CP, Buzzo JR. et al. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct[J]. Biofilm, 2020, 2:100039.
doi: 10.1016/j.bioflm.2020.100039 URL |
[61] | 张溪, 弓磊. 抗菌肽抗菌机制及研究热点[J]. 中国组织工程研究, 2020, 24(10):1634-1640. |
[62] | 伍亚云, 黄勋. 噬菌体治疗细菌感染的研究进展[J]. 中国感染控制杂志, 2021, 20(2):186-190. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||