[1] |
Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: A report of the heart failure society of america, heart failure association of the european society of cardiology, japanese heart failure society and writing committee of the universal definition of heart failure[J]. J Card Fail, 2021, Mar1:S1071- 9164(21)00050-6. Online ahead of print
|
[2] |
《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2021》概述[J]. 中国心血管病研究, 2022, 20(7): 577-596.
|
[3] |
Li H, Gu J, Sun X, et al. Isolation of swine bone marrow lin-/CD45-/CD133+ cells and cardio-protective effects of its exosomes[J]. Stem Cell Rev Rep, 2023, 19(1): 213-229.
|
[4] |
Luo Z, Hu X, Wu C, et al. Plasma exosomes generated by ischaemic preconditioning are cardioprotective in a rat heart failure model[J]. Br J Anaesth, 2023, 130(1): 29-38.
|
[5] |
Femminò S, Penna C, Margarita S, et al. Extracellular vesicles and cardiovascular system: Biomarkers and cardioprotective effectors[J]. Vascul Pharmacol, 2020, 135:106790.
|
[6] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
|
[7] |
Yao J, Huang K, Zhu D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano, 2021, 15(7): 11099-11111.
doi: 10.1021/acsnano.1c00628
pmid: 34152126
|
[8] |
Lyu L, Wang H, Li B, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes[J]. J Mol Cell Cardiol, 2015, 89(Pt B): 268-279.
doi: 10.1016/j.yjmcc.2015.10.022
pmid: 26497614
|
[9] |
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5): 2136-2146.
doi: 10.1172/JCI70577
pmid: 24743145
|
[10] |
Xiao M, Zeng W, Wang J, et al. Exosomes protect against acute myocardial infarction in rats by regulating the renin-angiotensin system[J]. Stem Cells Dev, 2021, 30(12): 622-631.
|
[11] |
Moita MR, Silva MM, Diniz C, et al. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis[J]. Front Cardiovasc Med, 2022, 9:1015473.
|
[12] |
何亚州. 温中益气方对来源于外泌体的miR-320a调控PIK3CA防治慢性心力衰竭心肌纤维化的研究[D]. 南宁: 广西中医药大学, 2019.
|
[13] |
Li J, Salvador AM, Li G, et al. Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling[J]. Circ Res, 2021, 128(1): e1-e23.
|
[14] |
Vaskova E, Ikeda G, Tada Y, et al. Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal mir-181a in a rodent chronic myocardial infarction model[J]. J Am Heart Assoc, 2020, 9(13): e015640.
|
[15] |
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125-137.
doi: S0022-2828(18)30140-8
pmid: 29698635
|
[16] |
Gao L, Qiu F, Cao H, et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine[J]. Theranostics, 2023, 13(2): 685-703.
doi: 10.7150/thno.73568
pmid: 36632217
|
[17] |
Hou Z, Qin X, Hu Y, et al. Longterm exercise-derived exosomal miR-342-5p: A novel exerkine for cardioprotection[J]. Circ Res, 2019, 124(9): 1386-1400.
doi: 10.1161/CIRCRESAHA.118.314635
pmid: 30879399
|
[18] |
Sun C, Li W, Li Y, et al. MiR-182-5p mediated by exosomes derived from bone marrow mesenchymal stem cell attenuates inflammatory responses by targeting tlr4 in a mouse model of myocardial infraction[J]. Immune Netw, 2022, 22(6): e49.
|
[19] |
Hu C, Liao J, Huang R, et al. MicroRNA-155-5p in serum derived-exosomes promotes ischaemia-reperfusion injury by reducing CypD ubiquitination by NEDD4[J]. ESC Heart Fail, 2023, 10(2):1144-1157.
doi: 10.1002/ehf2.14279
pmid: 36631006
|
[20] |
Ranjan P, Kumari R, Goswami SK, et al. Myofibroblast-derived exosome induce cardiac endothelial cell dysfunction[J]. Front Cardiovasc Med, 2021, 8:676267.
|
[21] |
Qiao L, Hu S, Liu S, et al. MicroRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential[J]. J Clin Invest, 2019, 129(6): 2237-2250.
doi: 10.1172/JCI123135
pmid: 31033484
|
[22] |
Liu H, Zhang Y, Yuan J, et al. Dendritic cell-derived exosomal miR-494-3p promotes angiogenesis following myocardial infarction[J]. Int J Mol Med, 2021, 47(1): 315-325.
|
[23] |
李光召. 肥厚心肌细胞来源外泌体miR-29a调控内皮细胞血管新生机制的研究[D]. 珠海: 遵义医科大学, 2020.
|
[24] |
Liu S, Chen J, Shi J, et al. M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment[J]. Basic Res Cardiol, 2020, 115(2): 22.
|
[25] |
Wu T, Chen Y, Du Y, et al. Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure[J]. J Thorac Dis, 2018, 10(11): 6211-6220.
doi: 10.21037/jtd.2018.10.52
pmid: 30622793
|
[26] |
Wang L, Liu J, Xu B, et al. Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure[J]. Kaohsiung J Med Sci, 2018, 34(11): 626-633.
|
[27] |
Lu W, Liu X, Zhao L, et al. MiR-22-3p in exosomes increases the risk of heart failure after down-regulation of FURIN[J]. Chem Biol Drug Des, 2023, 101(3):550-567.
|
[28] |
Xie Y, Hang JZ, Zhang N, et al. Clinical significance of MiR-27a expression in serum exosomes in patients with heart failure[J]. Cell Mol Biol (Noisy-le-grand), 2022, 67(5): 324-331.
doi: 10.14715/cmb/2021.67.5.44
pmid: 35818236
|
[29] |
赵娟, 刘婷, 魏红, 等. 血浆外泌体微小RNA-206和N末端B型脑钠肽前体及同型半胱氨酸在心力衰竭患者中的表达水平及应用价值[J]. 中国医药, 2022, 17(9): 1326-1330.
|
[30] |
孙晓燕, 亓良森, 赵海鸿, 等. 血清外泌体miR-122及miR-194在心肌梗死患者中诊断早期心衰的价值[J]. 解放军医学院学报, 2021, 42(9): 940-945.
|
[31] |
Matsumoto S, Sakata Y, Suna S, et al. Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction[J]. Circ Res, 2013, 113(3): 322-326.
doi: 10.1161/CIRCRESAHA.113.301209
pmid: 23743335
|
[32] |
Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo[J]. Sci Rep, 2019, 9(1): 10041.
|
[33] |
Yan F, Cui W, Chen Z. Mesenchymal stem cell-derived exosome-loaded microRNA-129-5p inhibits TRAF3 expression to alleviate apoptosis and oxidative stress in heart failure[J]. Cardiovasc Toxicol, 2022, 22(7): 631-645.
doi: 10.1007/s12012-022-09743-9
pmid: 35546649
|
[34] |
Xiong Y, Tang R, Xu J, et al. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway[J]. Stem Cell Res Ther, 2022, 13(1): 289.
|
[35] |
Gao L, Wang L, Wei Y, et al. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine[J]. Sci Transl Med, 2020, 12(561):eaay1318.
|
[36] |
Davidson SM, Riquelme JA, Zheng Y, et al. Endothelial cells release cardioprotective exosomes that may contribute to ischaemic preconditioning[J]. Sci Rep, 2018, 8(1): 15885.
|
[37] |
Li Q, Huang Z, Wang Q, et al. Targeted immunomodulation therapy for cardiac repair by platelet membrane engineering extracellular vesicles via hitching peripheral monocytes[J]. Biomaterials, 2022, 284:121529.
|
[38] |
Cheng G, Zhu D, Huang K, et al. Minimally invasive delivery of a hydrogel-based exosome patch to prevent heart failure[J]. J Mol Cell Cardiol, 2022, 169:113-121.
doi: 10.1016/j.yjmcc.2022.04.020
pmid: 35523270
|
[39] |
Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions[J]. Adv Drug Deliv Rev, 2021, 176:113872.
|
[40] |
Kim JY, Rhim WK, Yoo YI, et al. Defined MSC exosome with high yield and purity to improve regenerative activity[J]. J Tissue Eng, 2021, 12:20417314211008626.
|