Clinical Focus ›› 2024, Vol. 39 ›› Issue (3): 279-283.doi: 10.3969/j.issn.1004-583X.2024.03.015
Previous Articles Next Articles
Received:
2022-12-22
Online:
2024-03-20
Published:
2024-06-12
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.03.015
[1] | Marissal-Arvy N, Moisan MP. Diabetes and associated cognitive disorders: Role of the hypothalamic-pituitary adrenal axis[J]. Metabol Open, 2022, 15(7): 100202. |
[2] | Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure[J]. Ann N Y Acad Sci, 2015, 1353(9): 60-71. |
[3] |
Hirabayashi N, Hata J, Ohara T, et al. Association between diabetes and hippocampal atrophy in elderly Japanese: The hisayama study[J]. Diabetes Care, 2016, 39(9): 1543-1549.
doi: 10.2337/dc15-2800 pmid: 27385328 |
[4] | Femminella GD, Livingston NR, Raza S, et al. Does insulin resistance influence neurodegeneration in non-diabetic alzheimer's subjects?[J]. Alzheimers Res Ther, 2021, 13(1): 47. |
[5] | Dou C, Zhang Y, Zhang L, et al. Autophagy and autophagy-related molecules in neurodegenerative diseases[J]. Animal Model Exp Med, 2023, 6(1): 10-17. |
[6] | Chun Y, Kim J. Autophagy: An essential degradation program for cellular homeostasis and life[J]. Cells, 2018, 7(12):278. |
[7] | Fakih W, Mroueh A, Salah H, et al. Dysfunctional cerebrovascular tone contributes to cognitive impairment in a non-obese rat model of prediabetic challenge: Role of suppression of autophagy and modulation by anti-diabetic drugs[J]. Biochem Pharmacol, 2020, 178(4): 114041. |
[8] |
Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats[J]. Mol Med Rep, 2018, 18(2): 2449-2457.
doi: 10.3892/mmr.2018.9180 pmid: 29916537 |
[9] | Wang N, He J, Pan C, et al. Resveratrol activates autophagy via the AKT/mTOR signaling pathway to improve cognitive dysfunction in rats with chronic cerebral hypoperfusion[J]. Front Neurosci, 2019, 13(20): 859. |
[10] | Cui Y, Yang M, Wang Y, et al. Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway[J]. FASEB J, 2021, 35(4): e21485. |
[11] | 崔译心. 褪黑素改善2型糖尿病小鼠认知功能障碍的作用及机制研究[D]. 济南: 山东大学, 2021. |
[12] | 韩音. 褪黑素增强自噬抑制NLRP3炎症小体活化减轻慢性间歇性缺氧引起的认知障碍[D]. 武汉: 华中科技大学, 2021. |
[13] | Sorice M. Crosstalk of autophagy and apoptosis[J]. Cells, 2022, 11(9):1479. |
[14] |
Cao W, Li J, Yang K, et al. An overview of autophagy: Mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3): 304-322.
doi: 10.1016/j.bulcan.2020.11.004 pmid: 33423775 |
[15] | 孔飞娟. 利拉鲁肽对糖尿病小鼠认知功能下降的作用及其分子机制研究[D]. 杭州: 浙江大学, 2017. |
[16] | Gu HF, Li N, Tang YL, et al. Nicotinate-curcumin ameliorates cognitive impairment in diabetic rats by rescuing autophagic flux in CA1 hippocampus[J]. CNS Neurosci Ther, 2019, 25(4): 430-441. |
[17] | Kong FJ, Ma LL, Guo JJ, et al. Endoplasmic reticulum stress/autophagy pathway is involved in diabetes-induced neuronal apoptosis and cognitive decline in mice[J]. Clin Sci (Lond), 2018, 132(1): 111-125. |
[18] |
Zhu Q. The ER stress-autophagy axis: Implications for cognitive dysfunction in diabetes mellitus[J]. Clin Sci (Lond), 2020, 134(11): 1255-1258.
doi: 10.1042/CS20200235 pmid: 32501495 |
[19] | 李锋. 肥胖大鼠前额叶内质网应激—自噬相关的神经可塑性蛋白表达下降及运动的调节作用[D]. 上海: 上海体育学院, 2019. |
[20] |
Levine B, Kroemer G. Biological functions of autophagy genes: A disease perspective[J]. Cell, 2019, 176(1-2): 11-42.
doi: S0092-8674(18)31260-1 pmid: 30633901 |
[21] | Zhang Y, Li X, Liu LP, et al. Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D(2) in the beating rat atrium[J]. Korean J Physiol Pharmacol, 2017, 21(3): 293-300. |
[22] |
Yang Y, Xiang P, Chen Q, et al. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy[J]. Int J Biol Sci, 2021, 17(14): 3993-4004.
doi: 10.7150/ijbs.60149 pmid: 34671214 |
[23] | 程涵. 线粒体自噬Pink1/Parkin通路在胰岛素抵抗加速神经元损伤中的作用及机制研究[D]. 吉林: 吉林大学, 2021. |
[24] | Khang R, Park C, Shin JH. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice[J]. Neuroscience, 2015, 294(5): 182-192. |
[25] | Chung H, Nam H, Nguyen-Phuong T, et al. The blockade of cytoplasmic HMGB1 modulates the autophagy/apoptosis checkpoint in stressed islet beta cells[J]. Biochem Biophys Res Commun, 2021, 534(1): 1053-1058. |
[26] | 陈建明, 黄鹂丽, 宋小娜, 等. 血清DEC1、HMGB1及AngⅡ水平与帕金森病认知功能障碍及预后的相关性研究[J]. 实验与检验医学, 2020, 38(3):537-539,602. |
[27] | Mok H, Al-Jumaily A, Lu J. Plasmacytoma variant translocation 1 (PVT1) gene as a potential novel target for the treatment of diabetic nephropathy[J]. Biomedicines, 2022, 10(11):2711. |
[28] | Li Z, Hao S, Yin H, et al. Autophagy ameliorates cognitive impairment through activation of PVT1 and apoptosis in diabetes mice[J]. Behav Brain Res, 2016, 305(5): 265-277. |
[29] |
Tsuneoka M, Umata T, Kimura H, et al. C-myc induces autophagy in rat 3Y1 fibroblast cells[J]. Cell Struct Funct, 2003, 28(3): 195-204.
doi: 10.1247/csf.28.195 pmid: 12951440 |
[30] | Handa H, Honma K, Oda T, et al. Long Noncoding RNA PVT1 is regulated by bromodomain protein brd4 in multiple myeloma and is associated with disease progression[J]. Int J Mol Sci, 2020, 21(19):7121. |
[31] | Zhou Y, Li Z, Cao X, et al. Exendin-4 improves behaviorial deficits via GLP-1/GLP-1R signaling following partial hepatectomy[J]. Brain Res, 2019, 1706(3): 116-124. |
[32] |
Candeias E, Sebastião I, Cardoso S, et al. Brain GLP-1/IGF-1 signaling and autophagy mediate exendin-4 protection against apoptosis in type 2 diabetic rats[J]. Mol Neurobiol, 2018, 55(5): 4030-4050.
doi: 10.1007/s12035-017-0622-3 pmid: 28573460 |
[33] | Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review[J]. Front Neurosci, 2022, 16(9): 970925. |
[34] | 于钟钰, 郭景春, 周厚广. 棕榈酸羟基硬脂酸抗代谢性炎症综合征作用机制的研究进展[J]. 中国临床医学, 2019, 26(1):136-140. |
[35] | Wang JT, Yu ZY, Tao YH, et al. A novel palmitic acid hydroxy stearic acid (5-PAHSA) plays a neuroprotective role by inhibiting phosphorylation of the m-TOR-ULK1 pathway and regulating autophagy[J]. CNS Neurosci Ther, 2021, 27(4): 484-496. |
[36] |
Samaras K, Makkar S, Crawford JD, et al. Metformin use is associated with slowed cognitive decline and reduced incident dementia in older adults with type 2 diabetes: The sydney memory and ageing study[J]. Diabetes Care, 2020, 43(11): 2691-2701.
doi: 10.2337/dc20-0892 pmid: 32967921 |
[37] | Orkaby AR, Cho K, Cormack J, et al. Metformin vs sulfonylurea use and risk of dementia in US veterans aged≥65 years with diabetes[J]. Neurology, 2017, 89(18): 1877-1885. |
[38] | 陈金梁. 1、Ang-(1-7)通过激活Mas受体缓解糖尿病大鼠AD样神经病变2、二甲双胍通过促进细胞自噬缓解糖尿病脑病Tau蛋白病变[D]. 重庆: 重庆医科大学, 2017. |
[39] | Kodali M, Attaluri S, Madhu LN, et al. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus[J]. Aging Cell, 2021, 20(2): e13277. |
[40] |
Gabryel B, Liber S. Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation[J]. Folia Neuropathol, 2018, 56(4): 328-336.
doi: 34468 pmid: 30786670 |
[1] | . [J]. CLINICAL FOCUS, 2013, 28(6): 0-0. |
[2] | . [J]. Clinical Focus, 2012, 27(22): 0-0. |
[3] | JIN Liang;SHOU Song-tao. Dynamic observation on T lymphocyte subsets in patients with sepsis [J]. CLINICAL FOCUS, 2011, 26(12): 1036-1039. |
[4] | . [J]. CLINICAL FOCUS, 2011, 26(8): 718-719. |
[5] | LIU Yan-qin;YANG Yong-hui;ZHANG Long;ZHENG Ai-li;LV Na;JI Hui-juan. Effects of extracorporeal circulation on proportion and nucleolar organizer regions of mononuclear cells of atrial septal defect in infants [J]. CLINICAL FOCUS, 2010, 25(23): 2025-2.0282e+007. |
[6] | . [J]. CLINICAL FOCUS, 2010, 25(14): 1278-1281. |
[7] | . [J]. CLINICAL FOCUS, 2010, 25(5): 396-396. |
[8] | . [J]. CLINICAL FOCUS, 2009, 24(19): 1731-0. |
[9] | . [J]. CLINICAL FOCUS, 2009, 24(12): 1019-0. |
[10] | . [J]. CLINICAL FOCUS, 2009, 24(11): 953-0. |
[11] | . [J]. CLINICAL FOCUS, 2008, 23(22): 1672-1672. |
[12] | . [J]. CLINICAL FOCUS, 2008, 23(11): 762-0. |
[13] | . [J]. CLINICAL FOCUS, 2008, 23(10): 749-749. |
[14] | . [J]. CLINICAL FOCUS, 2008, 23(7): 476-476. |
[15] | . [J]. CLINICAL FOCUS, 2008, 23(7): 522-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||