Clinical Focus ›› 2024, Vol. 39 ›› Issue (5): 470-474.doi: 10.3969/j.issn.1004-583X.2024.05.015
Previous Articles Next Articles
Received:
2023-12-10
Online:
2024-05-20
Published:
2024-07-05
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.05.015
[1] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组, 中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会, 全国肺栓塞与肺血管病防治协作组. 肺血栓栓塞症诊治与预防指南[J]. 中华医学杂志, 2018, 98(14): 1060-87. |
[2] | Khan F, Tritschler T, Kahn SR, et al. Venous thromboembolism[J]. The Lancet, 2021, 398(10294): 64-77. |
[3] |
Jordan Bruno X, Koh I, Lutsey PL, et al. Venous thrombosis risk during and after medical and surgical hospitalizations: The medical inpatient thrombosis and hemostasis (MITH) study[J]. J Thromb Haemost, 2022, 20(7): 1645-1652.
doi: 10.1111/jth.15729 pmid: 35426248 |
[4] | Duffett L. Deep venous thrombosis[J]. Ann Intern Med, 2022, 175(9): Itc129-itc44. |
[5] |
Stein PD, Matta F, Hughes MJ. In-hospital risks and management of deep venous thrombosis according to location of the thrombus[J]. Am J Med, 2021, 134(7): 877-881.
doi: 10.1016/j.amjmed.2020.11.013 pmid: 33316253 |
[6] | 中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021年修订版)[J]. 中华结核和呼吸杂志, 2021, 44(3): 170-205. |
[7] | Bertoletti L, Couturaud F, Sanchez O, et al. Pulmonary embolism and chronic obstructive pulmonary disease[J]. Semin Thromb Hemost, 2023, 49(8): 809-815. |
[8] |
Bertoletti L, Couturaud F. COPD is not only one of the several VTE risk factors[J]. Eur J Intern Med, 2021, 84: 14-15.
doi: 10.1016/j.ejim.2020.12.013 pmid: 33358534 |
[9] |
Børvik T, Brækkan SK, Enga K, et al. COPD and risk of venous thromboembolism and mortality in a general population[J]. Eur Respir J, 2016, 47(2): 473-481.
doi: 10.1183/13993003.00402-2015 pmid: 26585434 |
[10] | Han W, Wang M, Xie Y, et al. Prevalence of pulmonary embolism and deep venous thromboembolism in patients with acute exacerbation of chronic obstructive pulmonary disease: A systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 732855. |
[11] | Borvik T, Braekkan SK, Evensen LH, et al. Chronic obstructive pulmonary disease and risk of mortality in patients with venous thromboembolism-The tromso study[J]. Thromb Haemost, 2020, 120(3): 477-83. |
[12] | 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. |
[13] |
Alzghoul BN, Reddy R, Chizinga M, et al. Pulmonary embolism in acute asthma exacerbation: Clinical characteristics, prediction model and hospital outcomes[J]. Lung, 2020, 198(4): 661-669.
doi: 10.1007/s00408-020-00363-0 pmid: 32424799 |
[14] |
Majoor CJ, Kamphuisen PW, Zwinderman AH, et al. Risk of deep vein thrombosis and pulmonary embolism in asthma[J]. Eur Respir J, 2013, 42(3): 655-661.
doi: 10.1183/09031936.00150312 pmid: 23258790 |
[15] | Zoller B, Pirouzifard M, Memon AA, et al. Risk of pulmonary embolism and deep venous thrombosis in patients with asthma: A nationwide case-control study from Sweden[J]. Eur Respir J, 2017, 49(2):1601014. |
[16] |
Sun H, Liu M, Yang X, et al. Incidence and risk factors of venous thrombotic events in patients with interstitial lung disease during hospitalization[J]. Thromb J, 2023, 21(1): 17.
doi: 10.1186/s12959-023-00458-7 pmid: 36765371 |
[17] | Boonpheng B, Ungprasert P. Risk of venous thromboembolism in patients with idiopathic pulmonary fibrosis: A systematic review and meta-analysis[J]. Sarcoidosis Vasc Diffuse Lung Dis, 2018, 35(2): 109-114. |
[18] | Danwang C, Bigna JJ, Awana AP, et al. Global epidemiology of venous thromboembolism in people with active tuberculosis: A systematic review and meta-analysis[J]. J Thromb Thrombolysis, 2021, 51(2): 502-512. |
[19] |
Cyr AR, Huckaby LV, Shiva SS, et al. Nitric oxide and endothelial dysfunction[J]. Crit Care Clin, 2020, 36(2): 307-321.
doi: S0749-0704(19)30104-6 pmid: 32172815 |
[20] | Cao YQ, Dong LX, Cao J. Pulmonary embolism in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Chin Med J (Engl), 2018, 131(14): 1732-1737. |
[21] |
Yong J, Toh CH. Rethinking coagulation: From enzymatic and cell-based reactions to a convergent model involving innate immune activation[J]. Blood, 2023, 142(25):2133-2145.
doi: 10.1182/blood.2023021166 pmid: 37890148 |
[22] |
Colling ME, Tourdot BE, Kanthi Y. Inflammation, infection and venous thromboembolism[J]. Circ Res, 2021, 128(12): 2017-2036.
doi: 10.1161/CIRCRESAHA.121.318225 pmid: 34110909 |
[23] | Skendros P, Mitsios A, Chrysanthopoulou A, et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis[J]. J Clin Invest, 2020, 130(11): 6151-6157. |
[24] | Burmeister A, Vidal-Y-Sy S, Liu X, et al. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation[J]. Front Immunol, 2022, 13: 1078891. |
[25] |
Zucoloto AZ, Jenne CN. Platelet-neutrophil interplay: Insights into neutrophil extracellular trap (NET)-driven coagulation in infection[J]. Front Cardiovasc Med, 2019, 6: 85.
doi: 10.3389/fcvm.2019.00085 pmid: 31281822 |
[26] | Carminita E, Crescence L, Panicot-Dubois L, et al. Role of neutrophils and NETs in animal models of thrombosis[J]. Int J Mol Sci, 2022, 23(3):1411. |
[27] | Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis[J]. Front Immunol, 2022, 13: 953129. |
[28] |
Zirka G, Robert P, Tilburg J, et al. Impaired adhesion of neutrophils expressing Slc44a2/HNA-3b to VWF protects against NETosis under venous shear rates[J]. Blood, 2021, 137(16): 2256-2266.
doi: 10.1182/blood.2020008345 pmid: 33556175 |
[29] |
Tilburg J, Coenen DM, Zirka G, et al. SLC44A2 deficient mice have a reduced response in stenosis but not in hypercoagulability driven venous thrombosis[J]. J Thromb Haemost, 2020, 18(7): 1714-1727.
doi: 10.1111/jth.14835 pmid: 32297475 |
[30] | Thaler B, Hohensinner PJ, Baumgartner J, et al. Protease-activated receptors 1 and 3 are differentially expressed on human monocyte subsets and are upregulated by lipopolysaccharide ex vivo and in vivo[J]. Thromb Haemost, 2019, 119(9):1394-1402. |
[31] |
Wu C, Lu W, Zhang Y, et al. Inflammasome activation triggers blood clotting and host death through pyroptosis[J]. Immunity, 2019, 50(6): 1401-11.e4.
doi: S1074-7613(19)30183-9 pmid: 31076358 |
[32] |
Grover SP, Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis[J]. Arterioscler Thromb Vasc Biol, 2018, 38(4): 709-725.
doi: 10.1161/ATVBAHA.117.309846 pmid: 29437578 |
[33] |
Marx C, Novotny J, Salbeck D, et al. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps[J]. Blood, 2019, 134(21): 1859-1872.
doi: 10.1182/blood.2019000518 pmid: 31481482 |
[34] | Hashimoto T, Ueki S, Kamide Y, et al. Increased circulating cell-free DNA in eosinophilic granulomatosis with polyangiitis: Implications for eosinophil extracellular traps and immunothrombosis[J]. Front Immunol, 2021, 12: 801897. |
[35] | Le J, Kulatheepan Y, Jeyaseelan S. Role of toll-like receptors and nod-like receptors in acute lung infection[J]. Front Immunol, 2023, 14: 1249098. |
[36] |
Ropert C. How toll-like receptors reveal monocyte plasticity: The cutting edge of antiinflammatory therapy[J]. Cell Mol Life Sci, 2019, 76(4): 745-755.
doi: 10.1007/s00018-018-2959-9 pmid: 30413835 |
[37] |
Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation[J]. Circ Res, 2016, 118(9): 1392-1408.
doi: 10.1161/CIRCRESAHA.116.306853 pmid: 27126649 |
[38] | Chrysanthopoulou A, Gkaliagkousi E, Lazaridis A, et al. Angiotensin II triggers release of neutrophil extracellular traps, linking thromboinflammation with essential hypertension[J]. JCI Insight, 2021, 6(18):e148668. |
[39] |
French SL, Butov KR, Allaeys I, et al. Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation[J]. Blood Adv, 2020, 4(13): 3011-3023.
doi: 10.1182/bloodadvances.2020001758 pmid: 32614966 |
[40] |
Leung HHL, Perdomo J, Ahmadi Z, et al. Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia[J]. Blood Adv, 2021, 5(23): 5439-5451.
doi: 10.1182/bloodadvances.2020003093 pmid: 34478504 |
[41] | Nolfi-Donegan D, Annarapu GK, St Croix C, et al. High-mobility group box 1 increases platelet surface P2Y12 and platelet activation in sickle cell disease[J]. JCI Insight, 2024, 9(5):e174575. |
[42] |
Yang J, Zhou X, Fan X, et al. mTORC1 promotes aging-related venous thrombosis in mice via elevation of platelet volume and activation[J]. Blood, 2016, 128(5): 615-624.
doi: 10.1182/blood-2015-10-672964 pmid: 27288518 |
[43] |
Vogel S, Arora T, Wang X, et al. The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase[J]. Blood Adv, 2018, 2(20): 2672-2680.
doi: 10.1182/bloodadvances.2018021709 pmid: 30333099 |
[44] | Mailer RKW, Hänel L, Allende M, et al. Polyphosphate as a target for interference with inflammation and thrombosis[J]. Front Med (Lausanne), 2019, 6: 76. |
[45] |
Dong H, Li H, Fang L, et al. Increased reactive oxygen species lead to overactivation of platelets in essential thrombocythemia[J]. Thromb Res, 2023, 226: 18-29.
doi: 10.1016/j.thromres.2023.04.001 pmid: 37087805 |
[46] | Vogel S, Murthy P, Cui X, et al. TLR4-dependent upregulation of the platelet NLRP3 inflammasome promotes platelet aggregation in a murine model of hindlimb ischemia[J]. Biochem Biophys Res Commun, 2019, 508(2): 614-619. |
[47] | Pilard M, Ollivier EL, Gourdou-Latyszenok V, et al. Endothelial cell phenotype, a major determinant of venous thrombo-inflammation[J]. Front Cardiovasc Med, 2022, 9: 864735. |
[48] | Zhuge Z, McCann Haworth S, Nihlén C, et al. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I[J]. Redox Biol, 2023, 60: 102612. |
[49] | Stepien KM, Roncaroli F, Turton N, et al. Mechanisms of mitochondrial dysfunction in lysosomal storage disorders: A review[J]. J Clin Med, 2020, 9(8). |
[50] | Potere N, Abbate A, Kanthi Y, et al. Inflammasome signaling, thromboinflammation, and venous thromboembolism[J]. JACC Basic Transl Sci, 2023, 8(9): 1245-1261. |
[51] | Bettiol A, Galora S, Argento FR, et al. Erythrocyte oxidative stress and thrombosis[J]. Expert Rev Mol Med, 2022, 24: e31. |
[52] | Öhlinger T, Müllner E W, Fritz M, et al. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes[J]. Blood Cells Mol Dis, 2020, 83: 102426. |
[53] | Wang Q, Zennadi R. Oxidative stress and thrombosis during Aging: The roles of oxidative stress in RBCs in venous thrombosis[J]. Int J Mol Sci, 2020, 21(12):4259. |
[54] |
Zhao X, Cooper M, Michael JV, et al. GRK2 regulates ADP signaling in platelets via P2Y1 and P2Y12[J]. Blood Adv, 2022, 6(15): 4524-4536.
doi: 10.1182/bloodadvances.2022007007 pmid: 35793439 |
[55] | Won T, Wood MK, Hughes DM, et al. Endothelial thrombomodulin downregulation caused by hypoxia contributes to severe infiltration and coagulopathy in COVID-19 patient lungs[J]. EBioMedicine, 2022, 75: 103812. |
[1] | Wang Jiaoyan, Zhang Yingchun, Ren Keming, Ma Guofeng, Ying Kejing. Clinical analysis of 16 cases of venous thromboembolism combined with psychiatric disorders treated with olanzapine [J]. Clinical Focus, 2022, 37(12): 1108-1113. |
[2] | Li Hongwei, Wu Qi. Focus on venous thromboembolism during pregnancy [J]. Clinical Focus, 2016, 31(4): 359-362. |
[3] | Jiang Mingming, Yuan Yadong. Malignant neoplasms and venous thromboembolism [J]. Clinical Focus, 2016, 31(4): 373-377. |
[4] | . [J]. CLINICAL FOCUS, 2008, 23(2): 137-138. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||