Clinical Focus ›› 2016, Vol. 31 ›› Issue (4): 447-450.doi: 10.3969/j.issn.1004-583X.2016.04.025
Previous Articles Next Articles
Received:
2015-12-07
Online:
2016-04-05
Published:
2016-04-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2016.04.025
[1] Hutchinson AT, Jones DR, Raison RL. Preclinical and clinical development of an anti-kappa free light chain mAb for multiple myeloma[J]. Mol Immunol,2015,67(2 Pt A):89-94. [2] Kyle RA, Rajkumar SV. Multiple myeloma[J]. Blood,2008,111(6):2962-2972. [3] Kuehl WM, Bergsagel PL. Molecular pathogenesis of multiple myeloma and its premalignant precursor[J]. J Clin Invest,2012,122(10):3456-3463. [4] Atanackovic D, Luetkens T, Kroger N. Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma[J]. Leukemia,2014,28(5):993-1000. [5] Lindstrom FD, Hardy WR, Eberle BJ, et al. Multiple myeloma and benign monoclonal gammopathy: differentiation by immunofluorescence of lymphocytes[J]. Ann Intern Med,1973,78(6):837-844. [6] Kohler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975,256(5517):495-497. [7] Ayed AO, Chang LJ, Moreb JS. Immunotherapy for multiple myeloma: Current status and future directions[J]. Crit Rev Oncol Hematol,2015,96(3):399-412. [8] 储大同. 单克隆抗体在肿瘤治疗中应用的研究进展[J]. 中国癌症杂志,2001,11(5):409-415. [9] Palaiologou M, Delladetsima I, Tiniakos D. CD138 (syndecan-1) expression in health and disease[J]. Histol Histopathol,2014,29(2):177-189. [10] Tassone P, Goldmacher VS, Neri P, et al. Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DM1 against CD138+ multiple myeloma cells[J]. Blood,2004,104(12):3688-3696. [11] Ikeda H, Hideshima T, Fulciniti M, et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo[J]. Clin Cancer Res,2009,15(12):4028-4037. [12] Vallario A, Chilosi M, Adami F, et al. Human myeloma cells express the CD38 ligand CD31[J]. Br J Haematol,1999,105(2):441-444. [13] de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors[J]. J Immunol,2011,186(3):1840-1848. [14] Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma[J]. N Engl J Med,2015,373(13):1207-1219. [15] Moen MD, Keam SJ. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis[J]. Drugs Aging,2011,28(1):63-82. [16] Roodman G. Pathogenesis of myeloma bone disease[J]. Leukemia,2009,23(3):435-441. [17] Hu MI, Glezerman IG, Leboulleux S, et al. Denosumab for treatment of hypercalcemia of malignancy[J]. J Clin Endocrinol Metab,2014,99(9):3144-3152. [18] Ueki K, Yamada S, Tsuchimoto A, et al. Rapid progression of vascular and soft tissue calcification while being managed for severe and persistent hypocalcemia induced by denosumab treatment in a patient with multiple myeloma and chronic kidney disease[J]. Intern Med,2015,54(20):2637-2642. [19] Dimopoulos MA, Kastritis E, Rosinol L, et al. Pathogenesis and treatment of renal failure in multiple myeloma[J]. Leukemia,2008,22(8):1485-1493. [20] Bech A, de Boer H. Denosumab for tumor-induced hypercalcemia complicated by renal failure[J]. Ann Intern Med,2012,156(12):906-907. [21] Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma[J]. Clin Cancer Res,2008,14(9):2775-2784. [22] Zonder JA, Mohrbacher AF, Singhal S, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma[J]. Blood,2012,120(3):552-559. [23] van Rhee F, Szmania SM, Dillon M, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma[J]. Mol Cancer Ther,2009,8(9):2616-2624. [24] Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma[J]. N Engl J Med,2015,373(7):621-631. [25] Han EQ, Li XL, Wang CR, et al. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges[J]. J Hematol Oncol,2013,6:47. [26] Maus MV, Grupp SA, Porter DL, et al. Antibody-modified T cells: CARs take the front seat for hematologic malignancies[J]. Blood,2014,123(17):2625-2635. [27] Jiang H, Zhang W, Shang P, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells[J]. Mol Oncol,2014,8(2):297-310. [28] Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma[J]. Immunotherapy,2015,7(11):1187-1199. [29] Kim JR, Mathew SO, Mathew PA. Blimp-1/PRDM1 regulates the transcription of human CS1 (SLAMF7) gene in NK and B cells[J]. Immunobiology,2016,221(1):31-39. [30] Wong SW, Comenzo RL. CD38 monoclonal antibody therapies for multiple myeloma[J]. Clin Lymphoma Myeloma Leuk,2015,15(11):635-645. [31] Bianchi G, Richardson PG, Anderson KC. Best treatment strategies in high-risk multiple myeloma: navigating a gray area[J]. J Clin Oncol,2014,32(20):2125-2132. [32] Kaufman JL, Niesvizky R, Stadtmauer EA, et al. Phase I, multicentre, dose-escalation trial of monotherapy with milatuzumab (humanized anti-CD74 monoclonal antibody) in relapsed or refractory multiple myeloma[J]. Br J Haematol,2013,163(4):478-486. [33] Mathan TS, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network[J]. Front Immunol,2013,4:372. [34] 李莉娟,张连生. 细胞免疫治疗现状与前景[J]. 临床血液学杂志,2015,28(3):370-373, 379. [35] Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases[J]. Nat Rev Immunol,2008,8(8):594-606. [36] Guillerme JB, Boisgerault N, Roulois D, et al. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells[J]. Clin Cancer Res,2013,19(5):1147-1158. [37] Brimnes MK, Svane IM, Johnsen HE. Impaired functionality and phenotypic profile of dendritic cells from patients with multiple myeloma[J]. Clin Exp Immunol,2006,144(1):76-84. [38] Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance[J]. Nat Rev Cancer,2005,5(4):263-274. [39] Tabera S, Perez-Simon JA, Diez-Campelo M, et al. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes[J]. Haematologica,2008,93(9):1301-1309. [40] Liu C, Lou Y, Lizee G, et al. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice[J]. J Clin Invest,2008,118(3):1165-1175. [41] Conrad C, Gregorio J, Wang YH, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of Foxp3(+) T-regulatory cells[J]. Cancer Res,2012,72(20):5240-5249. [42] Gerosa F, Gobbi A, Zorzi P, et al. The reciprocal interaction of NK cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions[J]. J Immunol,2005,174(2):727-734. [43] Chauhan D, Singh AV, Brahmandam M, et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target[J]. Cancer Cell,2009,16(4):309-323. [44] Ray A, Tian Z, Das DS, et al. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib[J]. Leukemia,2014,28(8):1716-1724. |
[1] | . [J]. Clinical Focus, 2023, 38(7): 654-658. |
[2] | Leng Wantong, Tao Jie. Risk factors of postoperative venous thromboembolism in patients with multiple myeloma [J]. Clinical Focus, 2023, 38(4): 340-345. |
[3] | Zhang Lihong, Ma Bing. Correlation between serum β-CTx and TRACP-5b and the severity and prognosis of multiple myeloma bone disease [J]. Clinical Focus, 2021, 36(7): 623-627. |
[4] | Chen Guanghua;Lin Fengru. Misdiagnosis cause analysis in multiple myeloma [J]. Clinical Focus, 2015, 30(10): 1120-1122. |
[5] | . @@ [J]. Clinical Focus, 2015, 30(10): 1186-1188. |
[6] | Li Yingwei;Shen Yuanyuan;Li Sasa;Wang Huiping;Zhang Cui;Qin Hui;Zhai Zhimin. Ultra small dose decitabine treatment to elderly patients with myelodysplastic syndrome [J]. Clinical Focus, 2015, 30(7): 773-776. |
[7] | . [J]. Clinical Focus, 2015, 30(6): 710-714. |
[8] | . [J]. Clinical Focus, 2015, 30(4): 476-480. |
[9] | . @@ [J]. Clinical Focus, 2014, 29(12): 1419-0. |
[10] | ZHENG Dong. Updates on treatment and standard of multiple myeloma [J]. Clinical Focus, 2014, 29(10): 1130-1133. |
[11] | . [J]. Clinical Focus, 2014, 29(7): 803-804. |
[12] | HAN Xiu-hua;SUN Li-hua;ZOU Jian;MEN Ya-hong;FAN Xiao-hong;WANG Xue-lian. Protective effect of reduced glutathione on peripheral neuropathy by thalidomide in multiple myeloma [J]. CLINICAL FOCUS, 2014, 29(4): 410-413. |
[13] | LIU Zhu-zhen;LI Guang-lun;YANG Jie;CUI Zhong-guang. Effects of different treatments on function of endothelial cells in multiple myeloma patients [J]. CLINICAL FOCUS, 2014, 29(2): 155-158. |
[14] | . [J]. Clinical Focus, 2013, 28(1): 102-0. |
[15] | CAO Li-xia;XIAO Zhen;GAO Da. Clinical observation of bortezomib plus chemothempy in ten patients with multiple myeloma [J]. Clinical Focus, 2012, 27(24): 2136-2.13721e+007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||