Clinical Focus ›› 2021, Vol. 36 ›› Issue (2): 174-178.doi: 10.3969/j.issn.1004-583X.2021.02.016
Previous Articles Next Articles
Received:
2020-09-21
Online:
2021-02-20
Published:
2021-02-05
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.02.016
[1] |
Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease[J]. Nat Rev Neurosci, 2018,19(11):687-700.
doi: 10.1038/s41583-018-0067-3 URL |
[2] |
Jiang C, Li G, Huang P, et al. The gut microbiota and Alzheimer’s disease[J]. J Alzheimers Dis, 2017,58(1):1-15.
doi: 10.3233/JAD-161141 URL |
[3] |
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017,49:60-68.
doi: 10.1016/j.neurobiolaging.2016.08.019 URL |
[4] |
Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease[J]. J Alzheimers Dis, 2018,63(4):1337-1346.
doi: 10.3233/JAD-180176 URL |
[5] |
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health[J]. J AOAC Int, 2012,95(1):50-60.
pmid: 22468341 |
[6] |
Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain[J]. Curr Pharm Des, 2014,20(10):1487-1498.
doi: 10.2174/13816128113199990462 URL |
[7] |
Govindarajan N, Agis-Balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression[J]. J Alzheimers Dis, 2011,26(1):187-197.
doi: 10.3233/JAD-2011-110080 URL |
[8] |
Bourassa MW, Alim I, Bultman SJ, et al. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health[J]. Neurosci Lett, 2016,625:56-63.
doi: 10.1016/j.neulet.2016.02.009 URL |
[9] |
Erny D, de Angelis ALH, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015,18(7):965-977.
doi: 10.1038/nn.4030 pmid: 90116967293390874 |
[10] |
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer's disease pathogenesis[J]. J Neuroinflammation, 2014,11:48.
doi: 10.1186/1742-2094-11-48 URL |
[11] |
Zhao Y, Jaber V, Lukiw WJ. Secretory products of the human GI tract microbiome and their potential impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus[J]. Front Cell Infect Microbiol, 2017,7:318.
doi: 10.3389/fcimb.2017.00318 URL |
[12] |
Barton SM, Janve VA, McClure R, et al. Lipopolysaccharide induced opening of the blood brain barrier on aging 5XFAD mouse model[J]. J Alzheimers Dis. 2019,67(2), 503-513.
doi: 10.3233/JAD-180755 pmid: WOS:000457779300007 |
[13] |
Aziz Q, Doré J, Emmanuel A, et al. Gut microbiota and gastrointestinal health: current concepts and future directions[J]. Neurogastroenterol Motil, 2013,25(1):4-15.
doi: 10.1111/nmo.2012.25.issue-1 URL |
[14] |
Wang MM, Miao D, Cao XP, et al. Innate immune activation in Alzheimer’s disease[J]. Ann Transl Med, 2018,6(10):177.
doi: 10.21037/atm URL |
[15] |
Alexandrov P, Zhai Y, Li W, et al. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain[J]. Folia Neuropathol, 2019,57(3):211-219.
doi: 37898 pmid: 31588707 |
[16] |
Iadanza MG, Jackson MP, Hewitt EW, et al. A new era for understanding amyloid structures and disease[J]. Nat Rev Mol Cell Biol, 2018,19(12):755-773.
doi: 10.1038/s41580-018-0060-8 URL |
[17] |
Marques F, Sousa JC, Sousa N, et al. Blood-brain-barriers in aging and in Alzheimer's disease[J]. Mol Neurodegener. 2013,8:38.
doi: 10.1186/1750-1326-8-38 URL |
[18] | Hill JM, Lukiw WJ. Microbial-generated amyloids and Alzheimer’s disease (AD)[J]. Front Aging Neurosci, 2015,7:9. |
[19] |
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease[J]. Cell Mol Neurobiol, 2015,35(1):71-83.
doi: 10.1007/s10571-014-0101-6 URL |
[20] |
Lukiw WJ, Li W, Bond T, et al. Facilitation of gastrointestinal (GI) tract microbiome-derived lipopolysaccharide (LPS) entry into human neurons by amyloid beta-42 (Aβ42) peptide[J]. Front Cell Neurosci, 2019,13:545.
doi: 10.3389/fncel.2019.00545 URL |
[21] |
Solas M, Puerta E, Ramirez MJ. Treatment options in Alzheimer's disease:the GABA story[J]. Curr Pharm Des, 2015,21(34):4960-4971.
doi: 10.2174/1381612821666150914121149 URL |
[22] |
Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders[J]. Neurochem Res, 2016,41(11):2819-2835.
doi: 10.1007/s11064-016-2039-1 URL |
[23] |
Pistollato F, Iglesias RC, Ruiz R, et al. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies[J]. Pharmacol Res, 2018,131:32-43.
doi: 10.1016/j.phrs.2018.03.012 URL |
[24] | Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease:a randomized, double-blind and controlled trial[J]. Front Aging Neurosci, 2016,8:256. |
[25] |
Nik Azm SA, Djazayeri A, Safa M, et al. Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in β-amyloid (1-42) injected rats[J]. Appl Physiol Nutr Metab, 2018,43(7):718-726.
doi: 10.1139/apnm-2017-0648 URL |
[26] | Chen D, Zhang P, Lin Li, et al. Protective effect of oligosaccharides from Morinda officinalis on beta-amyloid-induced dementia rats[J]. Zhongguo Zhong Yao Za Zhi, 2013,38(9):1306-1309. |
[27] |
Chen D, Yang X, Yang J, et al. Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis[J]. Front Aging Neurosci, 2017,9:403.
doi: 10.3389/fnagi.2017.00403 URL |
[28] | 杨玉芳. 当归芍药散对APP/PSN阿尔茨海默病模型小鼠肠道菌群的影响及分子机制[D]. 皖南医学院, 2016. |
[29] | 杨璐, 李庆华, 许玲, 等. 粪菌移植对阿尔茨海默病小鼠学习记忆能力的影响[J]. 郑州大学学报(医学版), 2017,52(6):702-706. |
[30] |
Kim M, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model[J]. Gut, 2020,69(2):283-294.
doi: 10.1136/gutjnl-2018-317431 URL |
[31] |
Ho L, Ono K, Tsuji M, et al. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms[J]. Expert Rev Neurother, 2018,18(1):83-90.
doi: 10.1080/14737175.2018.1400909 URL |
[32] |
Gu Y, Scarmeas N. Dietary patterns in Alzheimer's disease and cognitive aging[J]. Curr Alzheimer Res. 2011,8(5):510-519.
pmid: 21605048 |
[33] |
Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment[J]. EBioMedicine, 2019,47:529-542.
doi: 10.1016/j.ebiom.2019.08.032 URL |
[34] |
Yulug B, Hanoglu L, Ozansoy M, et al. Therapeutic role of rifampicin in Alzheimer’s disease[J]. Psychiatry Clin Neurosci, 2018,72(3):152-159.
doi: 10.1111/pcn.2018.72.issue-3 URL |
[35] |
Budni J, Garcez ML, de Medeiros J, et al. The anti-inflammatory role of minocycline in Alzheimer’s Disease[J]. Curr Alzheimer Res, 2016,13(12):1319-1329.
pmid: 27539598 |
[36] |
Wang C, Yu J-T, Miao D, et al. Targeting the mTOR signaling network for Alzheimer’s disease therapy[J]. Mol Neurobiol, 2014,49(1):120-135.
doi: 10.1007/s12035-013-8505-8 URL |
[37] |
Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour[J]. Brain Behav Immun, 2015,48:165-173.
doi: 10.1016/j.bbi.2015.04.004 URL |
[38] |
Contaldi F, Capuano F, Fulgione A, et al. Author correction: The hypojournal that helicobacter pylori predisposes to Alzheimer's disease is biologically plausible[J]. Sci Rep, 2018,8(1):6061.
doi: 10.1038/s41598-018-23613-x URL |
[39] |
Kountouras J, Gavalas E, Zavos C, et al. Alzheimer's disease and helicobacter pylori infection: defective immune regulation and apoptosis as proposed common links[J]. Med Hypotheses, 2007,68(2):378-388.
pmid: 16979298 |
[40] |
Wang XL, Zeng J, Yang Y, et al. Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β[J]. J Alzheimers Dis, 2015,43(1):153-165.
doi: 10.3233/JAD-140198 URL |
[41] |
Cui B, Li K, Gai Z, et al. Chronic noise exposure acts cumulatively to exacerbate Alzheimer’s disease-like amyloid-β pathology and neuroinflammation in the rat hippocampus[J]. Sci Rep, 2015,5:12943.
doi: 10.1038/srep12943 URL |
[42] |
Cui B, Su D, Li W, et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease[J]. J Neuroinflammation, 2018,15(1):190.
doi: 10.1186/s12974-018-1223-4 URL |
[43] |
Bharathi, Vasudevaraju P, Govindaraju M, et al. Molecular toxicity of aluminium in relation to neurodegeneration[J]. Indian J Med Res, 2008,128(4):545-556.
pmid: 19106446 |
[44] |
Alexandrov PN, Hill JM, Zhao Y, et al. Aluminum-induced generation of lipopolysaccharide (LPS) from the human gastrointestinal (GI)-tract microbiome-resident Bacteroides fragilis[J]. J Inorg Biochem, 2020,203:110886.
doi: 10.1016/j.jinorgbio.2019.110886 URL |
[1] | Qin Meijie, Tian Maolu, Yang Yuqi, Zha Yan, Yuan Jing. Literature review on treatment of immune thrombocytopenia secondary to refractory systemic lupus erythematosus with belimumab combined with cyclosporine: A case report and literature review [J]. Clinical Focus, 2022, 37(6): 544-547. |
[2] | . [J]. Clinical Focus, 2015, 30(9): 1066-1069. |
[3] | Gao Yuan;Meng Qinghua;Liu Haixia;Zhu Yueke. Abnormal liver function as the first symptom of systemic lupus erythematosus: analysis of 15 cases [J]. Clinical Focus, 2015, 30(7): 806-810. |
[4] | Li Wenru;Xing Guangqun. Effect of contact system and neutrophil extracellular traps in pathogenesis of lupus nephritis [J]. Clinical Focus, 2015, 30(6): 653-656. |
[5] | HUANG Zhi-fang;LI Xin-lun;LI Hong-xia;LUN Li-de. Efficacy and safety of intravenous immunoglobulin in severe systemic lupus erythematosus [J]. Clinical Focus, 2014, 29(11): 1243-1245. |
[6] | . [J]. Clinical Focus, 2014, 29(9): 1066-1067. |
[7] | LI Hong-bo;ZHANG Jing-kun;WU Chao;WANG Ji;ZHANG Yu-jun;GAO Li-xia. Relationship of high mobility group protein 1,Toll-like receptors 4, vascular endothelial cell adhesion molecule-1 expression in lupus nephritis with dyslipidemia [J]. Clinical Focus, 2014, 29(8): 891-895. |
[8] | . [J]. CLINICAL FOCUS, 2014, 29(3): 357-0. |
[9] | . [J]. CLINICAL FOCUS, 2013, 28(10): 1179-1181. |
[10] | . [J]. CLINICAL FOCUS, 2013, 28(9): 1059-1060. |
[11] | WANG Zeng-ling;XING Guang-qun;LI Chun-mei. Level and significance of serum peptidylarginine deiminase type 4 in patients with systemic lupus erythematous [J]. Clinical Focus, 2013, 28(5): 515-518. |
[12] | XU Xiao-ling;YU Xuan-hua;LI Yi-nong. Levels and clinical significance of B cell activating factor and interferon-α in systemic lupus erythematosus [J]. Clinical Focus, 2013, 28(5): 522-524532. |
[13] | DUAN Ji-hui;JIANG Yan;MU Hong;TANG Zhi-qin;JIANG Jie-chun. Expression of TACI in patients with lupus nephritis [J]. Clinical Focus, 2013, 28(2): 141-143147. |
[14] | . [J]. Clinical Focus, 2013, 28(1): 103-104. |
[15] | PANG Jie;ZHOU Lei;WANG Kun-kun;CHEN Xian. Factors associated with metabolic syndrome in systemic lupus erythematosus [J]. Clinical Focus, 2012, 27(21): 1844-1846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||