Clinical Focus ›› 2021, Vol. 36 ›› Issue (4): 374-378.doi: 10.3969/j.issn.1004-583X.2021.04.018
Previous Articles Next Articles
Received:
2020-10-08
Online:
2021-04-20
Published:
2021-05-13
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.04.018
[1] |
Nishida A, Inoue R, Inatomi O, et al. Gut microbiota in the pathogenesis of inflammatory bowel disease[J]. Clin J Gastroenterol, 2018,11(1):1-10.
doi: 10.1007/s12328-017-0813-5 URL |
[2] |
Meng C, Bai C, Brown TD, et al. Human gut microbiota and gastrointestinal cancer[J]. Genomics Proteomics Bioinformatics, 2018,16(1):33-49.
doi: 10.1016/j.gpb.2017.06.002 URL |
[3] |
Blaser MJ. Antibiotic use and its consequences for the normal microbiome[J]. Science, 2016,352(6285):544-545.
doi: 10.1126/science.aad9358 URL |
[4] |
Soldi S, Vasileiadis S, Uggeri F, et al. Modulation of the gut microbiota composition by rifaximin in non-constipated irritable bowel syndrome patients: A molecular approach[J]. Clin Exp Gastroenterol, 2015,8:309-325.
doi: 10.2147/CEG.S89999 pmid: 26673000 |
[5] |
Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation: The eubiotic effects of rifaximin[J]. Dig Dis, 2016,34(3):269-278.
doi: 10.1159/000443361 URL |
[6] |
Kim IS, Yoo DH, Jung IH, et al. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin[J]. Biochem Pharmacol, 2016,122:72-79.
doi: 10.1016/j.bcp.2016.09.023 URL |
[7] |
Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure[J]. Nat Microbiol, 2018,3(11):1255-1265.
doi: 10.1038/s41564-018-0257-9 pmid: 30349083 |
[8] |
Ianiro G, Tilg H, Gasbarrini A. Antibiotics as deep modulators of gut microbiota: Between good and evil[J]. Gut, 2016,65(11):1906-1915.
doi: 10.1136/gutjnl-2016-312297 URL |
[9] | Mosca A, Leclerc M, Hugot JP. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem?[J]. Front Microbiol, 2016,7:455. |
[10] |
Simonyte Sjödin K, Vidman L, Rydén P, et al. Emerging evidence of the role of gut microbiota in the development of allergic diseases[J]. Curr Opin Allergy Clin Immunol, 2016,16(4):390-395.
doi: 10.1097/ACI.0000000000000277 pmid: 27253486 |
[11] |
Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children[J]. Nat Commun, 2016,7:10410.
doi: 10.1038/ncomms10410 pmid: 26811868 |
[12] |
Iizumi T, Battaglia T, Ruiz V, et al. Gut microbiome and antibiotics[J]. Arch Med Res, 2017,48(8):727-734.
doi: 10.1016/j.arcmed.2017.11.004 URL |
[13] |
Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity[J]. J Hepatol, 2014,60(4):824-831.
doi: 10.1016/j.jhep.2013.11.034 URL |
[14] |
Isanaka S, Langendorf C, Berthé F, et al. Routine amoxicillin for uncomplicated severe acute malnutrition in children[J]. N Engl J Med, 2016,374(5):444-453.
doi: 10.1056/NEJMoa1507024 URL |
[15] |
Arboleya S, Sánchez B, Solís G, et al. Impact of prematurity and perinatal antibiotics on the developing intestinal microbiota: A functional inference study[J]. Int J Mol Sci, 2016,17(5):649.
doi: 10.3390/ijms17050649 URL |
[16] |
Hwang I, Park YJ, Kim YR, et al. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity[J]. Faseb J, 2015,29(6):2397-2411.
doi: 10.1096/fsb2.v29.6 URL |
[17] |
Stewardson AJ, Gaïa N, François P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota[J]. Clin Microbiol Infect, 2015, 21(4): 344.e1-11.
doi: 10.1016/j.cmi.2014.11.016 URL |
[18] |
Rashid MU, Zaura E, Buijs MJ, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods[J]. Clin Infect Dis, 2015,60(Suppl 2):S77-84.
doi: 10.1093/cid/civ137 URL |
[19] |
Iizumi T, Taniguchi T, Yamazaki W, et al. Effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota in mice[J]. Gut Pathog, 2016,8:60.
doi: 10.1186/s13099-016-0143-z URL |
[20] |
Agamennone V, Krul CAM, Rijkers G, et al. A practical guide for probiotics applied to the case of antibiotic-associated diarrhea in the netherlands[J]. BMC Gastroenterol, 2018,18(1):103.
doi: 10.1186/s12876-018-0831-x pmid: 30078376 |
[21] |
McFarland LV, Ozen M, Dinleyici EC, et al. Comparison of pediatric and adult antibiotic-associated diarrhea and clostridium difficile infections[J]. World J Gastroenterol, 2016,22(11):3078-104.
doi: 10.3748/wjg.v22.i11.3078 URL |
[22] |
Larcombe S, Hutton ML, Lyras D. Involvement of bacteria other than clostridium difficile in antibiotic-associated diarrhoea[J]. Trends Microbiol, 2016,24(6):463-476.
doi: 10.1016/j.tim.2016.02.001 URL |
[23] |
Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of clostridium difficile infection and its potential role in inflammatory bowel disease[J]. Inflamm Bowel Dis, 2015,21(8):1957-66.
doi: 10.1097/MIB.0000000000000461 URL |
[24] |
Vogt SL, Peña-Díaz J, Finlay BB. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens[J]. Anaerobe, 2015,34:106-15.
doi: 10.1016/j.anaerobe.2015.05.002 URL |
[25] |
GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017,377(1):13-27.
doi: 10.1056/NEJMoa1614362 URL |
[26] |
Li M, Xue H, Wang W, et al. Increased obesity risks for being an only child in China: Findings from a nationally representative study of 19, 487 children[J]. Public Health, 2017,153:44-51.
doi: S0033-3506(17)30229-9 pmid: 28843799 |
[27] |
Nogacka AM, Salazar N, Arboleya S, et al. Early microbiota, antibiotics and health[J]. Cell Mol Life Sci, 2018,75(1):83-91.
doi: 10.1007/s00018-017-2670-2 URL |
[28] |
Azad MB, Bridgman SL, Becker AB, et al. Infant antibiotic exposure and the development of childhood overweight and central adiposity[J]. Int J Obes (Lond), 2014,38(10):1290-1298.
doi: 10.1038/ijo.2014.119 pmid: 25012772 |
[29] |
Quigley EMM. Microbiota-brain-gut axis and neurodegenerative diseases[J]. Curr Neurol Neurosci Rep, 2017,17(12):94.
doi: 10.1007/s11910-017-0802-6 pmid: 29039142 |
[30] |
O'Mahony SM, Clarke G, Dinan TG, et al. Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle?[J]. Neuroscience, 2017,342:37-54.
doi: S0306-4522(15)00895-7 pmid: 26432952 |
[31] |
Slykerman RF, Thompson J, Waldie KE, et al. Antibiotics in the first year of life and subsequent neurocognitive outcomes[J]. Acta Paediatr, 2017,106(1):87-94.
doi: 10.1111/apa.13613 URL |
[32] |
Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior[J]. Nat Commun, 2017,8:15062.
doi: 10.1038/ncomms15062 pmid: 28375200 |
[33] |
Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation[J]. Genome Med, 2016,8(1):39.
doi: 10.1186/s13073-016-0294-z pmid: 27074706 |
[34] |
Lapin B, Piorkowski J, Ownby D, et al. Relationship between prenatal antibiotic use and asthma in at-risk children[J]. Ann Allergy Asthma Immunol, 2015,114(3):203-207.
doi: 10.1016/j.anai.2014.11.014 URL |
[35] |
Hirsch AG, Pollak J, Glass TA, et al. Early-life antibiotic use and subsequent diagnosis of food allergy and allergic diseases[J]. Clin Exp Allergy, 2017,47(2):236-244.
doi: 10.1111/cea.12807 URL |
[36] | Stensballe LG, Simonsen J, Jensen SM, et al. Use of antibiotics during pregnancy increases the risk of asthma in early childhood[J]. J Pediatr, 2013, 162(4):832-838.e3. |
[37] |
Patrick DM, Sbihi H, Dai DLY, et al. Decreasing antibiotic use, the gut microbiota, and asthma incidence in children: Evidence from population-based and prospective cohort studies[J]. Lancet Respir Med, 2020,8(11):1094-1105.
doi: 10.1016/S2213-2600(20)30052-7 URL |
[1] | . [J]. Clinical Focus, 2012, 27(22): 2024-0. |
[2] | . [J]. CLINICAL FOCUS, 2011, 26(13): 1195-1195. |
[3] | . [J]. CLINICAL FOCUS, 2011, 26(6): 526-0. |
[4] | . [J]. CLINICAL FOCUS, 2010, 25(11): 1005-1007. |
[5] | . [J]. CLINICAL FOCUS, 2010, 25(3): 217-0. |
[6] | . [J]. CLINICAL FOCUS, 2009, 24(18): 1581-1581. |
[7] | . [J]. CLINICAL FOCUS, 2009, 24(17): 1481-1481. |
[8] | . [J]. CLINICAL FOCUS, 2008, 23(12): 895-896. |
[9] | . [J]. CLINICAL FOCUS, 2008, 23(10): 0-0. |
[10] | . [J]. CLINICAL FOCUS, 2007, 22(24): 1778-1780. |
[11] | . [J]. CLINICAL FOCUS, 2007, 22(23): 1677-0. |
[12] | LI Zhong-xing;ZHANG Xin-hua;WANG Xiu-hua;MENG Xiao-jie. Comparison of in vitro antibacterial activity of minocycline and doxycycline against Staphylococcus epidermidis [J]. CLINICAL FOCUS, 2007, 22(22): 1610-1613. |
[13] | . [J]. CLINICAL FOCUS, 2006, 21(18): 1326-1327. |
[14] | . [J]. CLINICAL FOCUS, 2006, 21(4): 233-233. |
[15] | . [J]. CLINICAL FOCUS, 2005, 20(22): 1263-1263. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||