Clinical Focus ›› 2021, Vol. 36 ›› Issue (10): 951-955.doi: 10.3969/j.issn.1004-583X.2021.10.017
Previous Articles Next Articles
Received:
2021-06-07
Online:
2021-10-20
Published:
2021-11-10
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.10.017
[1] | 中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志, 2019,25(3):281-309. |
[2] | 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019,12(4):317-318. |
[3] |
Bonaccorsi G, Piva I, Greco P, et al. Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: Existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss[J]. Indian J Med Res, 2018,147(4):341-351.
doi: 10.4103/ijmr.IJMR_524_18 pmid: 29998869 |
[4] | Domazetovic V, Marcucci G, Iantomasi T, et al. Oxidative stress in bone remodeling: Role of antioxidants[J]. Clin Cases Miner Bone Metab, 2017,14(2):209-216. |
[5] | Zahan OM, Serban O, Gherman C, et al. The evaluation of oxidative stress in osteoarthritis[J]. Med Pharm Rep, 2020,93(1):12-22. |
[6] | 杨霞, 赵琳. 维生素D基因多态性研究进展[J]. 广西医学, 2019,41(21):2774-2777. |
[7] |
Zhang L, Yin X, Wang J, et al. Associations between VDR gene polymorphisms and osteoporosis risk and bone mineral density in postmenopausal women: A systematic review and meta-analysis[J]. Sci Rep, 2018,8(1):981.
doi: 10.1038/s41598-017-18670-7 URL |
[8] |
Marozik PM, Tamulaitiene M, Rudenka E, et al. Association of Vitamin D receptor gene variation with osteoporosis risk in Belarusian and Lithuanian postmenopausal women[J]. Front Endocrinol (Lausanne), 2018,9:305.
doi: 10.3389/fendo.2018.00305 URL |
[9] | 邵娜, 王硕, 栗瑶, 等. 血清25-(OH)D水平与儿童矮身材的关系[J]. 临床荟萃, 2021,36(4):353-356. |
[10] | 毛未贤, 张萌萌, 马倩倩, 等. 绝经后骨质疏松B细胞、T细胞亚群、免疫调控因子与骨密度相关性研究[J]. 中国骨质疏松杂志, 2020,26(12):1732-1736,1741. |
[11] | 张慎启, 石磊, 李文金, 等. 骨质疏松相关骨免疫学进展[J]. 中国老年学杂志, 2021,41(13):2907-2912. |
[12] |
Weitzmann MN. Bone and the immune system[J]. Toxicol Pathol, 2017,45(7):911-924.
doi: 10.1177/0192623317735316 pmid: 29046115 |
[13] |
Wrigley R, Phipps-Green AJ, Topless RK, et al. Pleiotropic effect of the ABCG2 gene in gout: Involvement in serum urate levels and progression from hyperuricemia to gout[J]. Arthritis Res Ther, 2020,22(1):45.
doi: 10.1186/s13075-020-2136-z URL |
[14] |
Lin KM, Lu CL, Hung KC, et al. The paradoxical role of uric acid in osteoporosis[J]. Nutrients, 2019,11(9):2111.
doi: 10.3390/nu11092111 URL |
[15] |
Fatima T, McKinney C, Major TJ, et al. The relationship between ferritin and urate levels and risk of gout[J]. Arthritis Res Ther, 2018,20(1):179.
doi: 10.1186/s13075-018-1668-y URL |
[16] |
Chen W, Roncal-Jimenez C, Lanaspa M, et al. Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo[J]. Metabolism, 2014,63(1):150-160.
doi: 10.1016/j.metabol.2013.09.018 URL |
[17] | Mohammed A, Marie MA, Abdulazim DO, et al. Serum urate lowering therapy using allopurinol improves serum 25 hydroxy Vitamin D in stage 3-5 CKD patients: A pilot study[J]. Nephron, 2021,145(2):133-136. |
[18] |
Dai XJ, Tao JH, Fang X, et al. Changes of Treg/Th17 ratio in spleen of acute gouty arthritis rat induced by MSU crystals[J]. Inflammation, 2018,41(5):1955-1964.
doi: 10.1007/s10753-018-0839-y URL |
[19] |
Baey C, Yang J, Ronchese F, et al. Hyperuricaemic UrahPlt2/Plt2 mice show altered T cell proliferation and defective tumor immunity after local immunotherapy with Poly I:C[J]. PLoS One, 2018,13(11):e0206827.
doi: 10.1371/journal.pone.0206827 URL |
[20] | 陈莹, 唐珊珊, 彭永德, 等. 高尿酸血症与肿瘤免疫机制的研究进展[J]. 医学综述, 2021,27(3):487-491. |
[21] | Ahn SH, Lee SH, Kim BJ, et a1. Higher serum uric acid is associated with higher bone mass,lower bone turnover and lower prevalence of vertebral fracture in healthy postmenopausal women[J]. Osteoporos Int, 2013,24(12):296l-2970. |
[22] | 王淑芳, 杨乃龙, 孙玉英, 等. 尿酸对类成骨细胞(MG-63)增殖的影响及其机制研究[J]. 现代生物医学进展, 2017,17(12):2227-2231,2240. |
[23] | 孙文婷, 阎小萍, 陶庆文, 等. 尿酸对骨质疏松症骨代谢作用机制的研究进展[J]. 中日友好医院学报, 2020,34(4):230-232. |
[24] | 张山山, 杨乃龙, 徐丽丽, 等. 尿酸对人骨髓间充质干细胞成骨分化中Cbfα1/Runx2表达的影响[J]. 中国骨质疏松杂志, 2013,19(4):363-366,344. |
[25] | 王潇丽, 徐丽丽, 杨乃龙. 尿酸对人骨髓间充质干细胞成骨分化过程中Wnt信号通路的影响[J]. 中国组织工程研究, 2015,(28):4472-4477. |
[26] |
Lai JH, Luo SF, Hung LF, et al. Physiological concentrations of soluble uric acid are chondroprotective and anti-inflammatory[J]. Sci Rep, 2017,7(1):2359.
doi: 10.1038/s41598-017-02640-0 URL |
[27] |
Kaushal N, Vohora D, Jalali RK, et al. Raised serum uric acid is associated with higher bone mineral density in a cross-sectional study of a healthy Indian population[J]. Ther Clin Risk Manag, 2018,14:75-82.
doi: 10.2147/TCRM URL |
[28] | Pan K, Yao X, Liu M, et al. Association of serum uric acid status with bone mineral density in adolescents aged 12-19 years[J]. Front Med (Lausanne), 2020,7:255. |
[29] |
Karimi F, Dabbaghmanesh MH, Omrani GR. Association between serum uricacid and bone health in adolescents[J]. Osteoporos Int, 2019,30(10):2057-2064.
doi: 10.1007/s00198-019-05072-w pmid: 31278471 |
[30] |
Ahn SH, Lee SH, Kim BJ, et al. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women[J]. Osteoporos Int, 2013,24(12):2961-2970.
doi: 10.1007/s00198-013-2377-7 pmid: 23644878 |
[31] |
Bonaccorsi G, Trentini A, Greco P, et al. Changes in adipose tissue distribution and association between uric acid and bone health during menopause transition[J]. Int J Mol Sci, 2019,20(24):6321.
doi: 10.3390/ijms20246321 URL |
[32] | 查敏, 杨乃龙, 李玲, 等. 绝经后女性及老年男性骨密度与血尿酸的相关性[J]. 中华骨质疏松和骨矿盐疾病杂志, 2018,11(4):359-364. |
[33] | 井源, 孙健斌, 张晓梅. 老年2型糖尿病患者血尿酸水平与骨代谢、骨密度及骨质疏松的关系[J]. 中国骨质疏松杂志, 2021,27(1):114-118,138. |
[34] | 魏婷, 董旋, 高飞. 2型糖尿病患者血尿酸水平与骨密度及骨转换标志物的相关性分析[J]. 中国骨质疏松杂志, 2020,26(1):99-104. |
[35] |
Yan P, Zhang Z, Wan Q, et al. Association of serum uric acid with bone mineral density and clinical fractures in Chinese type 2 diabetes mellitus patients:A cross-sectional study[J]. Clin Chim Acta, 2018,486:76-85.
doi: 10.1016/j.cca.2018.07.033 URL |
[36] |
Mehta T, Bůžková P, Sarnak MJ, et al. Serum urate levels and the risk of hip fractures: Data from the cardiovascular health study[J]. Metabolism, 2015,64(3):438-446.
doi: 10.1016/j.metabol.2014.11.006 URL |
[37] |
Paik JM, Kim SC, Feskanich D, et al. Gout and risk of fracture in women: A prospective cohort study[J]. Arthritis Rheumatol, 2017,69(2):422-428.
doi: 10.1002/art.39852 URL |
[38] |
Kok VC, Horng JT, Wang MN, et al. Gout as a risk factor for osteoporosis: Epidemiologic evidence from a population-based longitudinal study involving 108, 060 individuals[J]. Osteoporos Int, 2018,29(4):973-985.
doi: 10.1007/s00198-018-4375-2 pmid: 29383389 |
[39] | 张小兰, 曹克光. 尿酸与疾病[J]. 临床荟萃, 2006,21(3):225-227. |
[40] | Chin KY, Nirwana SI, Ngah WZ. Significant association between parathyroid hormone and uric acid level in men[J]. Clin Interv Aging, 2015,10:1377-1380. |
[41] |
Tzeng HE, Lin CC, Wang IK, et al. Gout increases risk of fracture: A nationwide population-based cohort study[J]. Medicine (Baltimore), 2016,95(34):e4669.
doi: 10.1097/MD.0000000000004669 URL |
[42] |
Sultan AA, Whittle R, Muller S, et al. Risk of fragility fracture among patients with gout and the effect of urate-lowering therapy[J]. CMAJ, 2018,190(19):e581-e587.
doi: 10.1503/cmaj.170806 URL |
[43] |
Zong Q, Hu Y, Zhang Q, et al. Associations of hyperuricemia, gout, and UA-lowering therapy with the risk of fractures: A meta-analysis of observational studies[J]. Joint Bone Spine, 2019,86(4):419-427.
doi: 10.1016/j.jbspin.2019.03.003 URL |
[1] | . [J]. Clinical Focus, 2023, 38(12): 1146-1149. |
[2] | . [J]. Clinical Focus, 2023, 38(7): 668-672. |
[3] | Chen Jie, Chen Shu, Yin Yufeng, Chang Xin, Wu Jian. Computed tomography values of lumbar spine in diagnosing osteoporosis: A meta-analysis [J]. Clinical Focus, 2022, 37(11): 970-976. |
[4] | Lian Yihua, Pi Yalei, Zhang Yanan, Zhang Huifeng. McCune-Albright syndrome in adolescence with regular menstrual cycle: A case report and literature review [J]. Clinical Focus, 2022, 37(5): 447-450. |
[5] | Li Na, Zhang Fang, Hao Lihong, Liu Yang. Case report of a neonate with cleidocranial dysplasia caused by novel RUNX2 mutation [J]. Clinical Focus, 2021, 36(1): 62-65. |
[6] | Li Chen, Wang Jing, Shi Xiaohu, Liu Jinhe, Hao Weixin, Dong Zhenhua, Zhang Wen. Follow-up of treatment of anti-tumor necrosis factor alpha blocker in 35 patients with refractory SAPHO syndrome [J]. Clinical Focus, 2016, 31(1): 45-47. |
[7] | Yang Zhihong;Yang Guifeng;Gao Lin;Li Fang;Zhang Pengyu;Fan Xinna;Wang Qian;Jiao Junfeng. Bone mineral density of the elderly in Qinhuangdao city and its relationship with body mass index [J]. Clinical Focus, 2015, 30(1): 78-81. |
[8] | . Effects of ibandronate sodium on bone mineral density in maintenance hemodialysis patients with osteoporosis [J]. Clinical Focus, 2014, 29(12): 1372-1.37414e+007. |
[9] | . [J]. Clinical Focus, 2014, 29(11): 1314-1315. |
[10] | . [J]. Clinical Focus, 2014, 29(1): 96-100. |
[11] | . [J]. Clinical Focus, 2014, 29(1): 104-108. |
[12] | . [J]. Clinical Focus, 2013, 28(4): 448-0. |
[13] | . [J]. Clinical Focus, 2012, 27(12): 1064-1065. |
[14] | YANG Ji-gang;ZHUANG Hong-ming. Value of SPECT planar and tomographic scan in diagnosis of lumbar spondyiolysis of youngsters [J]. Clinical Focus, 2012, 27(10): 855-857. |
[15] | GUO Li. Survey on influenciai factors of bone mineral density in middle and elder persons living in Yi ethnic area of Liangshan [J]. Clinical Focus, 2012, 27(6): 474-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||