[1] |
Chen JM, Zhu WJ, Liu J, et al. Safety and efficacy of thalidomide in patients with transfusion-dependent β-thalassemia: A randomized clinical trial[J]. Sig Transduct Target Ther, 2021, 6(1): 1-7.
doi: 10.1038/s41392-020-00451-w
URL
|
[2] |
Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults[J]. Brit J Haematol, 2009, 145(4): 455-467.
doi: 10.1111/j.1365-2141.2009.07650.x
pmid: 19344402
|
[3] |
Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing[J]. Science, 2011, 334(6058): 993-996.
doi: 10.1126/science.1211053
URL
|
[4] |
Doss JF, Corcoran DL, Jima DD, et al. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes[J]. BMC genomics, 2015, 16(1): 1-16.
doi: 10.1186/1471-2164-16-1
URL
|
[5] |
Alijani S, Alizadeh S, Kazemi A, et al. Evaluation of the effect of miR-26b up-regulation on HbF expression in erythroleukemic K-562 cell line[J]. Avicenna J Med Biotechnol, 2014, 6(1): 53-56.
|
[6] |
Pule GD, Mowla S, Novitzky N, et al. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: Implications for new therapeutic approaches of sickle cell disease[J]. Clin Transl Med, 2016, 5(1): 1-15.
|
[7] |
Walker AL, Steward S, Howard TA, et al. Epigenetic and molecular profiles of erythroid cells after hydroxyurea treatment in sickle cell anemia[J]. Blood, 2011, 118(20): 5664-5670.
doi: 10.1182/blood-2011-07-368746
pmid: 21921042
|
[8] |
Sun KT, Huang YN, Palanisamy K, et al. Reciprocal regulation of γ-globin expression by exo-miRNAs: Relevance to γ-globin silencing in β-thalassemia major[J]. Sci Rep-UK, 2017, 7(1): 1-15.
|
[9] |
Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia[J]. Nature, 2014, 514(7521): 242-246.
doi: 10.1038/nature13614
URL
|
[10] |
Fard AD, Hosseini SA, Shahjahani M, et al. Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders[J]. Int J Hematol Oncol Stem Cell Res, 2013, 7(3): 47-54.
|
[11] |
Sankaran VG. Targeted therapeutic strategies for fetal hemoglobin induction[J]. ASH Education Program Book, 2011, 2011(1): 459-465.
|
[12] |
Ahmadvand M, Norouzinia M, Soleimani M, et al. In vitro induction of the gamma globin gene in erythroid cells derived from cd133+ by thalidomide and sodium butyrate[J]. Genetics in the 3rd Millennium, 2011, 9(2): 2373-2378.
|
[13] |
Hansen JM, Gong SG, Philbert M, et al. Misregulation of gene expression in the redox-sensitive NF-κb-dependent limb outgrowth pathway by thalidomide[J]. Dev Dynam, 2002, 225(2): 186-194.
pmid: 12242718
|
[14] |
Jalali Far MA, Dehghani Fard A, Hajizamani S, et al. Thalidomide is more efficient than sodium butyrate in enhancing GATA-1 and EKLF gene expression in erythroid progenitors derived from HSCs with β-globin gene mutation[J]. Int J Hematol Oncol Stem Cell Res, 2016, 10(1): 37-41.
|