Clinical Focus ›› 2022, Vol. 37 ›› Issue (12): 1148-1152.doi: 10.3969/j.issn.1004-583X.2022.12.016
Received:
2022-10-14
Online:
2022-12-20
Published:
2023-01-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.12.016
[1] |
Sun H, Saeedi P, Karuranga S, Pinkepank M, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119-109131.
doi: 10.1016/j.diabres.2021.109119 URL |
[2] | Polemiti E, Baudry J, Kuxhaus O, et al. BMI and BMI change following incident type 2 diabetes and risk of microvascular and macrovascular complications: The EPIC-Potsdam study[J]. Diabetologia, 2021, 61(4):814-825. |
[3] |
Zheng Y, He M, Congdon N. The worldwide epidemic of diabetic retinopathy[J]. Indian J Ophthalmol, 2012, 60(5):428-431.
doi: 10.4103/0301-4738.100542 pmid: 22944754 |
[4] |
Kang Q, Yang C. Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J]. Redox Biol, 2020, 37:101799.
doi: 10.1016/j.redox.2020.101799 URL |
[5] |
Dulull N, Kwa F, Osman N, et al. Recent advances in the management of diabetic retinopathy[J]. Drug Discov Today, 2019, 24(8): 1499-1509.
doi: S1359-6446(18)30392-1 pmid: 30954684 |
[6] |
Bahrami B, Shen W, Zhu L, et al. Effects of VEGF inhibitors on human retinal pigment epithelium under high glucose and hypoxia[J]. Clin Exp Ophthalmol, 2019, 47(8):1074-1081.
doi: 10.1111/ceo.13579 pmid: 31265210 |
[7] |
Sunder M, Christopher H, Chao DL. SGLT2 inhibitor-induced low-grade ketonemia ameliorates retinal hypoxia in diabetic retinopathy-a novel hypothesis[J]. J Clin Endocr Metab, 2021, 106(5):1235-1244.
doi: 10.1210/clinem/dgab050 URL |
[8] |
Li S, Lu S, Zhang L, et al. Basic regulatory effects and clinical value of metalloproteinase-14 and extracellular matrix metalloproteinase inducer in diabetic retinopathy[J]. Mater Express, 2021, 11(6):873-879.
doi: 10.1166/mex.2021.1982 URL |
[9] |
Cabral Pacheco GA, Garza Veloz I, Castruita De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases[J]. Int J Mol Sci, 2020, 21(24): 9739-9793.
doi: 10.3390/ijms21249739 URL |
[10] |
Nogueira RC, Pinheiro LC, Sanches-Lopes JM, et al. Omeprazole induces vascular remodeling by mechanisms involving xanthine oxidoreductase and matrix metalloproteinase activation[J]. Biochem Pharmacol, 2021, 190:114633.
doi: 10.1016/j.bcp.2021.114633 URL |
[11] |
Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: A tissue culture assay[J]. Proc Natl Acad Sci USA, 1962, 48(6):1014-1022.
doi: 10.1073/pnas.48.6.1014 URL |
[12] |
Opdenakker G, El-Asrar AA. Metalloproteinases mediate diabetes-induced retinal neuropathy and vasculopathy[J]. Cell Mol Life Sci, 2019, 76(16):3157-3166.
doi: 10.1007/s00018-019-03177-3 pmid: 31183508 |
[13] |
Wang N, Yuan Y, Sun S, et al. MicroRNA-204-5p participates in atherosclerosis via targeting MMP-9[J]. Open Med, 2020, 15:231-239.
doi: 10.1515/med-2020-0034 URL |
[14] |
Wang H, Huang L, Wu L, et al. The MMP-2/TIMP-2 system in Alzheimer disease[J]. CNS Neurol Disord Drug Targets, 2020, 19(6):402-416.
doi: 10.2174/1871527319666200812223007 URL |
[15] |
Prado A, Bannwart CM, Shinkai V, et al. Phyto-derived products as matrix metalloproteinases inhibitors in cardiovascular diseases[J]. Curr Hypertens Rep, 2020, 17(1):47-58.
doi: 10.1007/s11906-015-0559-8 URL |
[16] |
Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: The role of DNA methylation[J]. Int J Mol Sci, 2020, 21(5):1771-1786.
doi: 10.3390/ijms21051771 URL |
[17] | Li W, Xiao H. Scutellaria barbata D. Scutellaria barbata.don polysaccharides inhibit high glucose-induced proliferation and angiogenesis of retinal vascular endothelial cells[J]. Diabetes Metab, 2021, 14:2341-2440. |
[18] |
Liu D, Xu H, Zhang C, et al. Erythropoietin maintains VE-cadherin expression and barrier function in experimental diabetic retinopathy via inhibiting VEGF/VEGFR2/Src signaling pathway[J]. Life Sci, 2020, 259:118273-118283.
doi: 10.1016/j.lfs.2020.118273 URL |
[19] |
Gaonkar B, Prabhu K, Rao P, et al. Plasma angiogenesis and oxidative stress markers in patients with diabetic retinopathy[J]. Biomarkers. 2020, 25(5):397-401.
doi: 10.1080/1354750X.2020.1774654 pmid: 32529845 |
[20] |
Ishizaki E, Takai S, Ueki M, et al. Correlation between angiotensin-converting enzyme, vascular endothelial growth factor, and matrix metalloproteinase-9 in the vitreous of eyes with diabetic retinopathy[J]. Am J Ophthalmol, 2006, 141(1):129-134.
doi: 10.1016/j.ajo.2005.08.066 pmid: 16386986 |
[21] |
Abu El-Asrar AM, Ahmad A, Bittoun E, et al. Differential expression and localization of human tissue inhibitors of metalloproteinases in proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2018, 96: e27-e37.
doi: 10.1111/aos.13451 URL |
[22] |
Abu El-Asrar AM, Ahmad A, Alam K, et al. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a potential biomarker of angiogenesis in proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2017, 95(7):697-704.
doi: 10.1111/aos.13284 pmid: 27860331 |
[23] |
Solanki A, Bhatt LK, Johnston TP, et al. Targeting matrix metalloproteinases for diabetic retinopathy: The way ahead?[J]. Curr Protein Pept Sc, 2019, 20(4):324-333.
doi: 10.2174/1389203719666180914093109 pmid: 30215334 |
[24] |
Peeters SA, Engelen L, Buijs J, et al. Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The eurodiab prospective complications study[J]. Cardiovasc Diabetol, 2015, 14:31.
doi: 10.1186/s12933-015-0195-2 pmid: 25848912 |
[25] |
Zhang Y, Liu H, Chen Z, et al. TLR4-mediated hippocampal MMP/TIMP imbalance contributes to the aggravation of perioperative neurocognitive disorder in db/db mice[J]. Neurochem Int, 2020, 140:104818-104819.
doi: 10.1016/j.neuint.2020.104818 URL |
[26] |
Jayashree K, Yasir M, Senthilkumar GP, et al. Circulating matrix modulators (MMP-9 and TIMP-1) and their association with severity of diabetic retinopathy[J]. Diabetes Metab Syndr., 2018: 12(6):869-873.
doi: S1871-4021(18)30153-X pmid: 29752166 |
[27] |
Lu L, Zhang Q, Pu LJ, et al. Dysregulation of matrix metalloproteinases and their tissue inhibitors is related to abnormality of left ventricular geometry and function in streptozotocin-induced diabetic minipigs[J]. Int J Experimental Pathol, 2010, 89(2):125-137.
doi: 10.1111/j.1365-2613.2008.00579.x URL |
[28] |
Everett LA, Paulus YM. Laser therapy in the treatment of diabetic retinopathy and diabetic macular edema[J]. Curr Diab Rep, 2021, 21(9):35-46.
doi: 10.1007/s11892-021-01403-6 URL |
[29] |
Julius A, Hopper W. A non-invasive, multi-target approach to treat diabetic retinopathy[J]. Biomed Pharmacother, 2018, 109:708-715.
doi: 10.1016/j.biopha.2018.10.185 URL |
[30] |
Garcia C, Bartsch DU, Rivero ME, et al. Efficacy of Prinomastat (AG3340), a matrix metalloprotease inhibitor, in treatment of retinal neovascularization[J]. Curr Eye Res, 2002, 24(1):33-38.
doi: 10.1076/ceyr.24.1.33.5429 URL |
[31] |
Barnett JM, McCollum GW, Fowler JA, et al. Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR[J]. Invest Ophthalmol Vis Sci, 2007, 48(2):907-921.
doi: 10.1167/iovs.06-0082 URL |
[32] |
Bhatt LK, Addepalli V. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats[J]. Am J Transl Res, 2010, 2(2): 181-189.
pmid: 20407607 |
[33] |
Rahman F, Wushur I, Malla N, et al. Zinc-chelating compounds as inhibitors of human and bacterial zinc metalloproteases[J]. Molecules, 2021, 27(1):56-73.
doi: 10.3390/molecules27010056 URL |
[34] | Mohammad G, Siddiquei MM, Nawaz MI, et al. The ERK1/2 inhibitor U0126 attenuates diabetes-induced upregulation of MMP-9 and biomarkers of inflammation in the retina[J]. J Diabetes Res, 2013, 2013:658548-658556. |
[35] |
Mishra M, Kowluru RA. Role of PARP-1 as a novel transcriptional regulator of MMP-9 in diabetic retinopathy[J]. BBA-Mol Basis Dis, 2017, 1863(7):1761-1769.
doi: S0925-4439(17)30136-9 pmid: 28478229 |
[36] |
Olanlokun JO, Abiodun WO, Ebenezer O, et al. Curcumin modulates multiple cell death, matrix metalloproteinase activation and cardiac protein release in susceptible and resistant plasmodium berghei-infected mice[J]. Biomed Pharmacother, 2021, 146:112454-112468.
doi: 10.1016/j.biopha.2021.112454 pmid: 34894518 |
[37] |
Alparslan A, Sava K, Mukadder B. The effects of caffeic acid phenethyl ester on retina in a diabetic rat model[J]. Cutan Ocul Toxicol, 2021, 40(3):268-273.
doi: 10.1080/15569527.2021.1940196 URL |
[38] | 陈晶, 关晓海, 杨杉杉, 等. 青蒿琥酯对糖尿病大鼠视网膜MMP-9表达的影响[J]. 中草药, 2018, 49(5): 1106-1109. |
[39] |
Smit-Mcbride Z, Morse LS. MicroRNA and diabetic retinopathy-biomarkers and novel therapeutics[J]. Ann of Transl Med, 2021, 9(5):1280-1296.
doi: 10.21037/atm-20-5189 URL |
[40] |
Pramanik S, Saha C, Chowdhury S, et al. Decreased levels of miR-126 and miR-132 in plasma and vitreous humor of non-proliferative diabetic retinopathy among subjects with type-2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2022, 15:345-358.
doi: 10.2147/DMSO.S346097 URL |
[41] |
Wang J, Zhang J, Chen X, et al. miR-365 promotes diabetic retinopathy through inhibiting Timp3 and increasing oxidative stress[J]. Expl Eye Res, 2018, 168:89-99.
doi: 10.1016/j.exer.2017.11.006 URL |
[42] |
Yang Y, Liu Y, Li Y, et al. MicroRNA-15b targets VEGF and inhibits angiogenesis in proliferative diabetic retinopathy[J]. J Clin Endocr Metab, 2020, 105(11):3404-3415.
doi: 10.1210/clinem/dgaa538 URL |
[43] | Xue L, Xiong C, Li J, et al. miR-200-3p suppresses cell proliferation and reduces apoptosis in diabetic retinopathy via blocking the TGF-β2/Smad pathway[J]. Bio scie Rep, 2020, 40(11):1-12. |
[44] | Kowluru RA, Santos JM, Mishra M. Epigenetic modifications and diabetic retinopathy[J]. Biomed Res Int, 2013, 2013:635284-635292. |
[45] |
Kowluru RA, Shan Y, Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy[J]. Lab Investig, 2016, 96(10):1040-1049.
doi: 10.1038/labinvest.2016.78 URL |
[46] |
Kowluru RA, Shan Y. Role of oxidative stress in epigenetic modification of MMP-9 promoter in the development of diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2017, 255(5):955-962.
doi: 10.1007/s00417-017-3594-0 URL |
[47] |
Mohammad G, Kowluru RA. Homocysteine disrupts balance between MMP-9 and its tissue inhibitor in diabetic retinopathy: The role of DNA methylation[J]. Int J Mol Sci, 2020, 21(5):1771-1785.
doi: 10.3390/ijms21051771 URL |
[1] | Wang Desheng, Sun Zhigang, Ma Zhoupeng. Correlation of serum high-sensitivity C-reactive protein and urine microalbumin/creatinine and retinal lesions in diabetic [J]. Clinical Focus, 2022, 37(3): 253-256. |
[2] | LIU Min;ZHANG Mian-zhi;ZHU Yu-xia;GE Jin;WANG Li-min. Serum chemerin concentrations associated with proliferative diabetic retinopathy [J]. CLINICAL FOCUS, 2014, 29(2): 146-148. |
[3] | . [J]. Clinical Focus, 2012, 27(10): 918-920. |
[4] | . [J]. Clinical Focus, 2012, 27(9): 780-781. |
[5] | . [J]. CLINICAL FOCUS, 2009, 24(8): 705-706. |
[6] | . [J]. CLINICAL FOCUS, 2008, 23(15): 1112-1113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||