Clinical Focus ›› 2023, Vol. 38 ›› Issue (8): 757-762.doi: 10.3969/j.issn.1004-583X.2023.08.015
Previous Articles Next Articles
Received:
2023-03-08
Online:
2023-08-20
Published:
2023-09-28
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.08.015
[1] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9 the dition[J]. Diabetes Res Clin Pract, 2019, 157:107843.
doi: 10.1016/j.diabres.2019.107843 URL |
[2] |
Kitada M, Zhang Z, Mima A, et al. Molecular mechanisms of diabetic vascular complications[J]. J Diabetes Investig, 2010, 1(3):77-89.
doi: 10.1111/j.2040-1124.2010.00018.x URL |
[3] | Zhao Q, Chen XY, Cathie M. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants[J]. Sci Bull (Beijing), 2016, 61(18):1391-1398. |
[4] | 田友清, 丁平, 燕宪海, 等. 对《中国药典》2005年版一部含牡丹皮制剂质量控制的探讨[J]. 中国中药杂志, 2008, 33(3):339-341. |
[5] |
Wei YM, Pi C, Yang G, et al. LC-UV determination of baicalin in rabbit plasma and tissues for application in pharmacokinetics and tissue distribution studies of baicalin after intravenous administration of liposomal and injectable formulations[J]. Molecules, 2016, 21(4):444.
doi: 10.3390/molecules21040444 pmid: 27104507 |
[6] |
Zhang R, Cui Y, Wang Y, et al. Catechol-o-methyltransferase and UDP glucuronosyltransferases in the metabolism of baicalein in different species[J]. Eur J Drug Metab Pharmacokinet, 2017, 42(6):981-992.
doi: 10.1007/s13318-017-0419-9 URL |
[7] |
Deng YX, Shi QZ, Chen B, et al. Comparative pharmacokinetics of baicalin in normal and the type 2 diabetic rats after oral administration of the radix scutellariae extract[J]. Fitoterapia, 2012, 83(8):1435-1442.
doi: 10.1016/j.fitote.2012.08.007 URL |
[8] | Xi YL, Li HX, Chen C, et al. Baicalin attenuates high fat diet-induced insulin resistance and ectopic fat storage in skeletal muscle, through modulating the protein kinase B/glycogen synthase kinase 3 beta pathway[J]. Chin J Nat Med, 2016, 14(1):48-55. |
[9] |
Fang P, Yu M, Min W, et al. Beneficial effect of baicalin on insulin sensitivity in adipocytes of diet-induced obese mice[J]. Diabetes Res Clin Pract, 2018, 139:262-271.
doi: 10.1016/j.diabres.2018.03.007 URL |
[10] |
Fang P, Sun Y, Gu X, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway[J]. Phytomedicine, 2019, 64:153074.
doi: 10.1016/j.phymed.2019.153074 URL |
[11] |
Wang T, Jiang H, Cao S, et al. Baicalin and its metabolites suppresses gluconeogenesis through activation of AMPK or AKT in insulin resistant hepG-2 cells[J]. Eur J Med Chem, 2017, 141:92-100.
doi: S0223-5234(17)30764-X pmid: 29028535 |
[12] |
Jaldin-Fincati JR, Pavarotti M, Frendo CS, et al. Update on GLUT4 vesicle traffic: A cornerstone of insulin action[J]. Trends Endocrinol Metab, 2017, 28(8):597-611.
doi: 10.1016/j.tem.2017.05.002 URL |
[13] |
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism[J]. Nature, 2001, 414(6865):799-806.
doi: 10.1038/414799a |
[14] |
Kuo YT, Lin CC, Kuo HT, et al. Identification of baicalin from bofutsushosan and daisaikoto as a potent inducer of glucose uptake and modulator of insulin signaling-associated pathways[J]. J Food Drug Anal, 2019, 27(1), 240-248.
doi: 10.1016/j.jfda.2018.07.002 URL |
[15] |
Fang P, Yu M, Min W, et al. Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats[J]. Life Sci, 2018, 196:156-161.
doi: S0024-3205(18)30028-6 pmid: 29459024 |
[16] |
You W, Wang K, Yu C, et al. Baicalin prevents tumor necrosis factor-α-induced apoptosis and dysfunction of pancreatic β-cell line Min6 via upregulation of miR-205[J]. J Cell Biochem, 2018, 119(10):8547-8554.
doi: 10.1002/jcb.27095 pmid: 30058243 |
[17] |
Yang M, Kan L, Wu L, et al. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism[J]. Exp Ther Med, 2019, 17(3):2071-2076.
doi: 10.3892/etm.2019.7181 pmid: 30867693 |
[18] |
Azemi AK, Mokhtar SS, Hou LJ, et al. Model for type 2 diabetes exhibits changes in vascular function and structure due to vascular oxidative stress and inflammation[J]. Biotech Histochem, 2021, 96(7):498-506.
doi: 10.1080/10520295.2020.1823480 URL |
[19] |
Zhang DD. Mechanistic studies of the Nrf 2-Keap 1 signaling pathway[J]. Drug Metab Rev, 2006, 38(4):769-789.
doi: 10.1080/03602530600971974 URL |
[20] |
Chen G, Chen XJ, Niu C, et al. Baicalin alleviates hyperglycemia-induced endothelial impairment1viaNrf2[J]. J Endocrinol, 2019, 240(1):81-98.
doi: 10.1530/JOE-18-0457 URL |
[21] |
Waisundara VY, Siu SY, Hsu A, et al. Baicalin upregulates the genetic expression of antioxidant enzymes in type-2 diabetic goto-kakizaki rats[J]. Life Sci, 2011, 88(23-24):1016-1025.
doi: 10.1016/j.lfs.2011.03.009 pmid: 21439975 |
[22] |
Wang G, Liang J, Gao LR, et al. Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system[J]. Cell Death Dis, 2018, 9(2):234.
doi: 10.1038/s41419-018-0318-2 pmid: 29445081 |
[23] |
Huang Q, Liu Q, Ouyang DS. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications[J]. Med Chem, 2019, 15(1):3-7.
doi: 10.2174/1573406414666180524082445 pmid: 29792152 |
[24] | Li XX, Zhao RM. Observation of the curative effect of liuwei dihuang pill on early diabetic nephropathy[J]. Med Innov Chin, 2011, 25:31-32. |
[25] |
Yang M, Kan L, Wu L, et al. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism[J]. Exp Ther Med, 2019, 17(3):2071-2076.
doi: 10.3892/etm.2019.7181 pmid: 30867693 |
[26] |
Nam JE, Jo SY, Ahn CW, et al. Baicalin attenuates fibrogenic process in human renal proximal tubular cells (HK-2) exposed to diabetic milieu[J]. Life Sci, 2020, 254:117742.
doi: 10.1016/j.lfs.2020.117742 URL |
[27] |
Xu J, Kitada M, Ogura Y, et al. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells[J]. Cells, 2021, 10(6):1457.
doi: 10.3390/cells10061457 URL |
[28] |
Qian Y, Chen Y, Wang L, et al. Effects of baicalin on inflammatory reaction, oxidative stress and PKD l and NF-kB protein expressions in rats with severe acute pancreatitis1[J]. Acta Cir Bras, 2018, 33(7):556-564.
doi: 10.1590/s0102-865020180070000001 URL |
[29] |
Nam JS, Cho MH, Lee GT, et al. The activation of NF-kappa B and AP-1 in peripheral blood mononuclear cells isolated from patients with diabetic nephropathy[J]. Diabetes Res Clin Pract, 2008, 81(1):25-32.
doi: 10.1016/j.diabres.2008.01.032 URL |
[30] | Yang B, Hodgkinson A, Oates PJ, et al. High glucose induction of DNA-binding activity of the transcription factor NF kappa B in patients with diabetic nephropathy[J]. Biochim Biophys Acta, 2008, 782(5):295-302. |
[31] |
Qiao YC, Chen YL, Pan YH, et al. Changes of transforming growth factor beta 1 in patients with type 2 diabetes and diabetic nephropathy: A PRISMA-compliant systematic review and meta-analysis[J]. Medicine (Baltimore), 2017, 96(15):e6583.
doi: 10.1097/MD.0000000000006583 URL |
[32] |
Chang AS, Hathaway CK, Smithies O, et al. Transforming growth factor-β1 and diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2016, 310(8):F689-F696.
doi: 10.1152/ajprenal.00502.2015 URL |
[33] |
Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: Profibrotic and protective effects[J]. Am J Physiol Renal Physiol, 2016, 310(7):F596-F606.
doi: 10.1152/ajprenal.00365.2015 URL |
[34] | Cooper ME, Vranes D, Youssef S, et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes[J]. Diabetes, 1999, 8(11):2229-2239. |
[35] | Nakagawa T, Sato W, Kosugi T, et al. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy[J]. J Diabetes Res, 2013, 2013:184539. |
[36] |
Cao W, Li J, Yang K, et al. An overview of autophagy: mechanism, regulation and research progress[J]. Bull Cancer, 2021, 108(3):304-322.
doi: 10.1016/j.bulcan.2020.11.004 pmid: 33423775 |
[37] |
Xu L, Fan Q, Wang X, et al. Ursolic acid improves podocyte injury caused by high glucose[J]. Nephrol Dial Transplant, 2017, 32(8):1285-1293.
doi: 10.1093/ndt/gfv382 URL |
[38] | Liu WJ, Huang WF, Ye L, et al. The activity and role of autophagy in the pathogenesis of diabetic nephropathy[J]. Eur Rev Med Pharmacol Sci, 2018, 22(10):3182-3189. |
[39] |
Wei MM, Liu CH, Zhang XC, et al. Autophagy is involved in regulating VEGF during high-glucose-induced podocyte injury[J]. Mol Biosyst, 2016, 12(7):2202-2212.
doi: 10.1039/c6mb00195e pmid: 27138352 |
[40] |
Wang X, Xu X, Xia Y. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus[J]. Antonie Van Leeuwenhoek, 2017, 110(3):445-453.
doi: 10.1007/s10482-016-0805-3 URL |
[41] |
Ju M, Liu Y, Li M, et al. Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet[J]. Eur J Pharmacol, 2019, 857:172457.
doi: 10.1016/j.ejphar.2019.172457 URL |
[42] |
Hänninen A, Toivonen R, Pöysti S, et al. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice[J]. Gut, 2018, 67(8):1445-1453.
doi: 10.1136/gutjnl-2017-314508 pmid: 29269438 |
[43] |
He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes[J]. Nutr Res, 2015, 35(5):361-367.
doi: 10.1016/j.nutres.2015.03.002 pmid: 25818484 |
[44] |
Jia ZY, Bai ZZ, Jiang LE, et al. Ocular pharmacokinetic study on baicalin in lens of rabbits following intragastric administration[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(1):59-63.
doi: 10.1007/s00417-009-1206-3 URL |
[45] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22):2402-2410.
doi: 10.1001/jama.2016.17216 pmid: 27898976 |
[46] |
Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis[J]. J Biochem Mol Biol, 2006, 39(5):469-478.
doi: 10.5483/bmbrep.2006.39.5.469 pmid: 17002866 |
[47] | Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy[J]. J Clin Cell Immunol, 2013, 11:1-12. |
[48] |
Zhang X, Bao S, Lai D, et al. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas[J]. Diabetes, 2008, 57(4):1026-1033.
doi: 10.2337/db07-0982 pmid: 18174522 |
[49] | Witmer AN, Blaauwgeers HG, Weich HA, et al. Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey[J]. Invest Ophthalmol Vis Sci, 2002, 43(3):849-857. |
[50] |
Jo H, Jung SH, Yim HB, et al. The effect of baicalin in a mouse model of retinopathy of prematurity[J]. BMB Rep, 2015, 48(5):271-276.
pmid: 25154719 |
[51] |
Deng YF, Aluko RE, Jin Q, et al. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme[J]. Pharm Biol, 2012, 50(4):401-406.
doi: 10.3109/13880209.2011.608076 pmid: 22136493 |
[52] |
Ola MS, Alhomida AS, Ferrario CM, et al. Role of tissue renin-angiotensin system and the chymase/angiotensin-( 1-12) axis in the pathogenesis of diabetic retinopathy[J]. Curr Med Chem, 2017, 24(28):3104-3114.
doi: 10.2174/0929867324666170407141955 pmid: 28403787 |
[53] |
Sarlos S, Rizkalla B, Moravski CJ, et al. Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin[J]. Am J Pathol, 2003, 163(3):879-887.
pmid: 12937129 |
[54] |
Behl T, Kaur I, Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy[J]. Surv Ophthalmol, 2016, 61(2):187-196.
doi: 10.1016/j.survophthal.2015.06.001 pmid: 26074354 |
[55] |
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB J, 2004, 18(12):1450-1452.
doi: 10.1096/fj.03-1476fje pmid: 15231732 |
[56] | Ye EA, Steinle JJ. MiR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose[J]. Mediators Inflamm, 2016, 2016:3958453. |
[57] |
Hui Y, Yin Y. MicroRNA-145 attenuates high glucose-induced oxidative stress and inflammation in retinal endothelial cells through regulating TLR4/NF-κB signaling[J]. Life Sci, 2018, 207:212-218.
doi: S0024-3205(18)30346-1 pmid: 29883722 |
[58] |
Dai C, Jiang S, Chu C, et al. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145[J]. Exp Mol Pathol, 2019, 106:123-130.
doi: S0014-4800(18)30345-9 pmid: 30625293 |
[59] |
Wrighten SA, Piroli GG, Grillo CA, et al. A look inside the diabetic brain: contributors to diabetes-induced brain aging[J]. Biochim Biophys Acta, 2009, 1792(5):444-453.
doi: 10.1016/j.bbadis.2008.10.013 pmid: 19022375 |
[60] |
Kwon KJ, Lee EJ, Kim MK, et al. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: Implication of cilostazol for diabetes mellitus-induced dementia[J]. Neurobiol Dis, 2015, 73:12-23.
doi: 10.1016/j.nbd.2014.08.034 pmid: 25281785 |
[61] |
Zhang L, Xing D, Wang W, et al. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of scutellariae radix extract[J]. J Ethnopharmacol, 2006, 103(1):120-125.
pmid: 16159703 |
[62] |
Ma P, Mao XY, Li XL, et al. Baicalin alleviates diabetesassociated cognitive deficits via modulation of mitogen-activated protein kinase signaling, brainderived neurotrophic factor and apoptosis[J]. Mol Med Rep, 2015, 12(4):6377-6383.
doi: 10.3892/mmr.2015.4219 URL |
[63] |
Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory[J]. Annu Rev Pharmacol Toxicol, 2002, 42:135-163.
pmid: 11807168 |
[64] |
Liu J, Feng L, Ma D, et al. Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat[J]. Neurosci Lett, 2013, 549:63-68.
doi: 10.1016/j.neulet.2013.06.002 pmid: 23791853 |
[65] |
Forlenza OV, Diniz BS, Teixeira AL, et al. Effect of brain-derived neurotrophic factor val66Met polymorphism and serum levels on the progression of mild cognitive impairment[J]. World J Biol Psychiatry, 2010, 11(6):774-780.
doi: 10.3109/15622971003797241 pmid: 20491609 |
[66] |
Murray SR, Reynolds RM. Short-and long-term outcomes of gestational diabetes and its treatment on fetal development[J]. Prenat Diagn, 2020, 40(9):1085-1091.
doi: 10.1002/pd.v40.9 URL |
[67] | 张涛, 田林红, 王春玲, 等. 黄芩苷对糖尿病大鼠心肌细胞凋亡的影响[J]. 实用医学杂志, 2010, 26(13):2289-2291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||