Clinical Focus ›› 2021, Vol. 36 ›› Issue (10): 946-950.doi: 10.3969/j.issn.1004-583X.2021.10.016
Previous Articles Next Articles
Received:
2021-06-18
Online:
2021-10-20
Published:
2021-11-10
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.10.016
[1] |
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J]. Am J Respir Crit Care Med, 2016,193(3):259-272.
doi: 10.1164/rccm.201504-0781OC URL |
[2] |
Paoli CJ, Reynolds MA, Sinha M, et al. Epidemiology and costs of sepsis in the united states-an analysis based on timing of diagnosis and severity level[J]. Crit Care Med, 2018,46(12):1889-1897.
doi: 10.1097/CCM.0000000000003342 URL |
[3] | Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in intensive care unit patients: Worldwide data from the intensive care over nations audit[J]. Open Forum Infect Dis, 2018,5(12):y313. |
[4] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study[J]. Lancet, 2020,395(10219):200-211.
doi: 10.1016/S0140-6736(19)32989-7 URL |
[5] |
Claushuis TA, van Vught LA, Scicluna BP, et al. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients[J]. Blood, 2016,127(24):3062-3072.
doi: 10.1182/blood-2015-11-680744 pmid: 26956172 |
[6] | Koyama K, Katayama S, Muronoi T, et al. Time course of immature platelet count and its relation to thrombocytopenia and mortality in patients with sepsis[J]. PLoS One, 2018,13(1):e192064. |
[7] |
de Stoppelaar SF, van't Veer C, van der Poll T. The role of platelets in sepsis[J]. Thromb Haemost, 2014,112(4):666-677.
doi: 10.1160/TH14-02-0126 URL |
[8] |
Dewitte A, Lepreux S, Villeneuve J, et al. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients?[J]. Ann Intensive Care, 2017,7(1):115.
doi: 10.1186/s13613-017-0337-7 URL |
[9] |
Kaya KE, Bulut C, Sonmezer MC, et al. Risk factors for linezolid-associated thrombocytopenia and negative effect of carbapenem combination[J]. J Infect Dev Ctries, 2019,13(10):886-891.
doi: 10.3855/jidc.10859 URL |
[10] |
Eissa DS, El-Farrash RA. New insights into thrombopoiesis in neonatal sepsis[J]. Platelets, 2013,24(2):122-128.
doi: 10.3109/09537104.2012.696748 URL |
[11] | Segre E, Pigozzi L, Lison D, et al. May thrombopoietin be a useful marker of sepsis severity assessment in patients with SIRS entering the emergency department?[J]. Clin Chem Lab Med, 2014,52(10):1479-1483. |
[12] |
Ghimire S, Ravi S, Budhathoki R, et al. Current understanding and future implications of sepsis-induced thrombocytopenia[J]. Eur J Haematol, 2021,106(3):301-305.
doi: 10.1111/ejh.v106.3 URL |
[13] |
Li C, Li J, Ni H. Crosstalk between platelets and microbial pathogens[J]. Front Immunol, 2020,11:1962.
doi: 10.3389/fimmu.2020.01962 URL |
[14] |
Larkin CM, Santos-Martinez MJ, Ryan T, et al. Sepsis-associated thrombocytopenia[J]. Thromb Res, 2016,141:11-16.
doi: 10.1016/j.thromres.2016.02.022 URL |
[15] |
Greco E, Lupia E, Bosco O, et al. Platelets and multi-organ failure in sepsis[J]. Int J Mol Sci, 2017,18(10):2200.
doi: 10.3390/ijms18102200 URL |
[16] | Hurley SM, Lutay N, Holmqvist B, et al. The dynamics of platelet activation during the progression of streptococcal sepsis[J]. PLoS One, 2016,11(9):e163531. |
[17] |
Pieterse E, Rother N, Yanginlar C, et al. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps[J]. Front Immunol, 2016,7:484.
pmid: 27867387 |
[18] | Larkin CM, Hante NK, Breen EP, et al. Role of matrix metalloproteinases 2 and 9, toll-like receptor 4 and platelet-leukocyte aggregate formation in sepsis-associated thrombocytopenia[J]. PLoS One, 2018,13(5):e196478. |
[19] |
Vayne C, Guery EA, Rollin J, et al. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia[J]. J Clin Med, 2020,9(7):2212.
doi: 10.3390/jcm9072212 URL |
[20] |
Kam T, Alexander M. Drug-induced immune thrombocytopenia[J]. J Pharm Pract, 2014,27(5):430-439.
doi: 10.1177/0897190014546099 URL |
[21] | 张培蕾, 周耕, 程永德. 肝素诱导性血小板减少症相关研究进展[J]. 介入放射学杂志, 2017,26(5):385-389. |
[22] | 李静, 安伟伟. 危重病患者血小板减少症发病机制及治疗的研究进展[J]. 医学综述, 2018,24(8):1546-1550. |
[23] |
Clark SR, Ma AC, Tavener S A, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007,13(4):463-469.
doi: 10.1038/nm1565 URL |
[24] |
Dewitte A, Lepreux S, Villeneuve J, et al. Correction to: Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically ill patients?[J]. Ann Intensive Care, 2018,8(1):32.
doi: 10.1186/s13613-018-0378-6 URL |
[25] |
Karim ZA, Zhang J, Banerjee M, et al. IkappaB kinase phosphorylation of SNAP-23 controls platelet secretion[J]. Blood, 2013,121(22):4567-4574.
doi: 10.1182/blood-2012-11-470468 URL |
[26] |
Manne BK, Xiang SC, Rondina MT. Platelet secretion in inflammatory and infectious diseases[J]. Platelets, 2017,28(2):155-164.
doi: 10.1080/09537104.2016.1240766 URL |
[27] |
Cardenas EI, Breaux K, Da Q, et al. Platelet munc13-4 regulates hemostasis, thrombosis and airway inflammation[J]. Haematologica, 2018,103(7):1235-1244.
doi: 10.3324/haematol.2017.185637 pmid: 29674495 |
[28] |
Williams CM, Li Y, Brown E, et al. Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice[J]. Blood Adv, 2018,2(24):3627-3636.
doi: 10.1182/bloodadvances.2018023291 URL |
[29] | Al HR, Ren Q, Ye S, et al. Munc18b/STXBP2 is required for platelet secretion[J]. Blood, 2012,120(12):2493-2500. |
[30] |
Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells[J]. Blood, 2014,123(18):2759-2767.
doi: 10.1182/blood-2013-11-462432 pmid: 24585776 |
[31] |
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation[J]. J Thromb Haemost, 2011,9(6):1097-1107.
doi: 10.1111/j.1538-7836.2011.04264.x pmid: 21435167 |
[32] |
Hamzeh-Cognasse H, Damien P, Chabert A, et al. Platelets and infections-complex interactions with bacteria[J]. Front Immunol, 2015,6:82.
doi: 10.3389/fimmu.2015.00082 pmid: 25767472 |
[33] |
Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4[J]. Blood, 2005,106(7):2417-2423.
pmid: 15961512 |
[34] |
Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo[J]. Blood, 2006,107(2):637-641.
doi: 10.1182/blood-2005-06-2202 URL |
[35] |
Cognasse F, Nguyen K A, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors[J]. Front Immunol, 2015,6:83.
doi: 10.3389/fimmu.2015.00083 pmid: 25784910 |
[36] | Lopes-Pires ME, Naime AC, Almeida CN, et al. PKC and AKT modulate cGMP/PKG signaling pathway on platelet aggregation in experimental sepsis[J]. PLoS One, 2015,10(9):e137901. |
[37] |
Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis[J]. J Clin Invest, 2015,125(12):4638-4654.
doi: 10.1172/JCI81660 URL |
[38] |
Carestia A, Rivadeneyra L, Romaniuk MA, et al. Functional responses and molecular mechanisms involved in histone-mediated platelet activation[J]. Thromb Haemost, 2013,110(5):1035-1045.
doi: 10.1160/TH13-02-0174 URL |
[39] |
Biswas S, Zimman A, Gao D, et al. TLR2 plays a key role in platelet hyperreactivity and accelerated thrombosis associated with hyperlipidemia[J]. Circ Res, 2017,121(8):951-962.
doi: 10.1161/CIRCRESAHA.117.311069 URL |
[40] |
Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease[J]. Thromb Haemost, 2013,110(5):910-919.
doi: 10.1160/TH13-02-0102 URL |
[41] |
Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins[J]. J Thromb Haemost, 2009,7(Suppl 1):200-205.
doi: 10.1111/jth.2009.7.issue-s1 URL |
[42] |
Brennan MP, Loughman A, Devocelle M, et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation[J]. J Thromb Haemost, 2009,7(8):1364-1372.
doi: 10.1111/j.1538-7836.2009.03495.x pmid: 19486275 |
[43] |
Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa[J]. Infect Immun, 2010,78(1):413-422.
doi: 10.1128/IAI.00664-09 pmid: 19884334 |
[44] |
Plummer C, Wu H, Kerrigan SW, et al. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb[J]. Br J Haematol, 2005,129(1):101-109.
doi: 10.1111/bjh.2005.129.issue-1 URL |
[45] |
Bensing BA, Lopez JA, Sullam PM. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha[J]. Infect Immun, 2004,72(11):6528-6537.
doi: 10.1128/IAI.72.11.6528-6537.2004 URL |
[46] |
Arman M, Krauel K. Human platelet IgG Fc receptor Fcgamma RIIA in immunity and thrombosis[J]. J Thromb Haemost, 2015,13(6):893-908.
doi: 10.1111/jth.12905 pmid: 25900780 |
[47] | Tomo S, Mohan S, Ramachandrappa VS, et al. Dynamic modulation of DC-SIGN and FcUpsilonR2A receptors expression on platelets in dengue[J]. PLoS One, 2018,13(11):e206346. |
[1] | Kuang Yongyun;Shan Bin;Duan Yong. Clinical analysis on 355 cases of gram-negative bacteria blood infection [J]. Clinical Focus, 2015, 30(4): 400-403. |
[2] | . [J]. CLINICAL FOCUS, 2011, 26(20): 1802-1804. |
[3] | . [J]. CLINICAL FOCUS, 2011, 26(12): 1066-1067. |
[4] | ZHAO Hua-jie;Song Shi-duo;LIU Yi. Relationship of serum high mobility group protein B1 levels and correlative clinic indexes in sepsis patients [J]. CLINICAL FOCUS, 2011, 26(10): 845-847. |
[5] | YU Hai-yan;SHOU Song-tao. Distribution and drug-resistance of pathogensis of patients in intensive care unit [J]. CLINICAL FOCUS, 2011, 26(6): 484-487. |
[6] | . [J]. CLINICAL FOCUS, 2011, 26(5): 423-424426. |
[7] | . [J]. CLINICAL FOCUS, 2011, 26(2): 177-180. |
[8] | . [J]. CLINICAL FOCUS, 2010, 25(21): 1887-1889. |
[9] | . [J]. CLINICAL FOCUS, 2009, 24(6): 532-533. |
[10] | . [J]. CLINICAL FOCUS, 2008, 23(8): 597-597. |
[11] | . [J]. CLINICAL FOCUS, 2007, 22(22): 1666-1668. |
[12] | . [J]. CLINICAL FOCUS, 2007, 22(5): 369-372. |
[13] | . [J]. CLINICAL FOCUS, 2006, 21(13): 983-0. |
[14] | . [J]. CLINICAL FOCUS, 2006, 21(11): 803-804. |
[15] | . [J]. CLINICAL FOCUS, 2005, 20(18): 1073-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||