Clinical Focus ›› 2023, Vol. 38 ›› Issue (9): 838-844.doi: 10.3969/j.issn.1004-583X.2023.09.012
Previous Articles Next Articles
Received:
2023-07-06
Online:
2023-09-20
Published:
2023-11-21
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.09.012
[1] |
Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: A review[J]. JAMA, 2022, 327(14): 1379-1391.
doi: 10.1001/jama.2022.4402 pmid: 35412560 |
[2] |
Quatredeniers M, Mendes-ferreira P, Santos-ribeiro D, et al. Iron deficiency in pulmonary arterial hypertension: A deep dive into the mechanisms[J]. Cells, 2021, 10(2):477.
doi: 10.3390/cells10020477 URL |
[3] |
Kramer T, Wissmüller M, Natsina K, et al. Ferric carboxymaltose in patients with pulmonary arterial hypertension and iron deficiency: A long-term study[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 1501-1512.
doi: 10.1002/jcsm.12764 pmid: 34498427 |
[4] |
Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J]. Eur Respir J, 2023, 61(1): 2200879.
doi: 10.1183/13993003.00879-2022 URL |
[5] |
Lan M, Wu S, Fernandes TM. Iron deficiency and pulmonary arterial hypertension[J]. Nutr Clin Pract, 2022, 37(5): 1059-1073.
doi: 10.1002/ncp.v37.5 URL |
[6] |
Shah AJ, Beckmann T, Vorla M, et al. New drugs and therapies in pulmonary arterial hypertension[J]. Int J Mol Sci, 2023, 24(6):5850.
doi: 10.3390/ijms24065850 URL |
[7] |
Ricci A, DI Betto G, Bergamini E, et al. Iron metabolism in the disorders of heme biosynthesis[J]. Metabolites, 2022, 12(9):819.
doi: 10.3390/metabo12090819 URL |
[8] |
Ottolenghi S, Zulueta A, Caretti A. Iron and sphingolipids as common players of (mal)adaptation to hypoxia in pulmonary diseases[J]. Int J Mol Sci, 2020, 21(1):307.
doi: 10.3390/ijms21010307 URL |
[9] |
Di PA, Tortora C, Argenziano M, et al. Emerging roles of the iron chelators in inflammation[J]. Int J Mol Sci, 2022, 23(14):7977.
doi: 10.3390/ijms23147977 URL |
[10] |
Sonnweber T, Pizzini A, Tancevski I, et al. Anaemia, iron homeostasis and pulmonary hypertension: A review[J]. Intern Emerg Med, 2020, 15(4): 573-585.
doi: 10.1007/s11739-020-02288-1 pmid: 32040829 |
[11] | 宋丽丽. 铁稳态对肺动脉高压影响的研究进展[J]. 河北医药, 2022, 44(15): 2364-2368, 2374. |
[12] |
Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: Two randomized controlled trials[J]. JAMA, 2009, 302(13): 1444-1450.
doi: 10.1001/jama.2009.1404 pmid: 19809026 |
[13] |
Spiekerkoetter E, Kawut SM, De Jesus PVA. New and emerging therapies for pulmonary arterial hypertension[J]. Annu Rev Med, 2019, 70: 45-59.
doi: 10.1146/annurev-med-041717-085955 pmid: 30216732 |
[14] |
Mansueto G, Di NM, Campobasso CP, et al. Pulmonary arterial hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis[J]. Pathol Res Pract, 2021, 225: 153552.
doi: 10.1016/j.prp.2021.153552 URL |
[15] |
Evans CE, Cober ND, Dai Z, et al. Endothelial cells in the pathogenesis of pulmonary arterial hypertension[J]. Eur Respir J, 2021, 58(3): 2003957.
doi: 10.1183/13993003.03957-2020 URL |
[16] |
Niihori M, Eccles CA, Kurdyukov S, et al. Rats with a human mutation of NFU1 develop pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2020, 62(2): 231-242.
doi: 10.1165/rcmb.2019-0065OC URL |
[17] |
Chai T, Qiu C, Xian Z, et al. A narrative review of research advances in hypoxic pulmonary hypertension[J]. Ann Transl Med, 2022, 10(4): 230.
doi: 10.21037/atm-22-259 pmid: 35280399 |
[18] |
Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding[J]. J Physiol, 2021, 599(6): 1745-1757.
doi: 10.1113/tjp.v599.6 URL |
[19] |
Deng L, Han X, Wang Z, et al. The landscape of noncoding RNA in pulmonary hypertension[J]. Biomolecules, 2022, 12(6):796.
doi: 10.3390/biom12060796 URL |
[20] | Zou HX, Qiu BQ, Lai SQ, et al. Iron metabolism and idiopathic pulmonary arterial hypertension: new insights from bioinformatic analysis[J]. Biomed Res Int, 2021, 2021: 5669412. |
[21] |
Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer[J]. Mol Cancer, 2020, 19(1): 43.
doi: 10.1186/s12943-020-01168-8 pmid: 32106859 |
[22] |
Tsai YM, Wu KL, Chang YY, et al. Loss of miR-145-5p causes ceruloplasmin interference with PHD-iron axis and HIF-2α stabilization in lung adenocarcinoma-mediated angiogenesis[J]. Int J Mol Sci, 2020, 21(14):5081.
doi: 10.3390/ijms21145081 URL |
[23] |
Nemeth E, Ganz T. Hepcidin-ferroportin interaction controls systemic iron homeostasis[J]. Int J Mol Sci, 2021, 22(12):6493.
doi: 10.3390/ijms22126493 URL |
[24] |
Meier JK, Schnetz M, Beck S, et al. Iron-bound lipocalin-2 protects renal cell carcinoma from ferroptosis[J]. Metabolites, 2021, 11(5):329.
doi: 10.3390/metabo11050329 URL |
[25] |
Nishizawa H, Matsumoto M, Shindo T, et al. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1[J]. J Biol Chem, 2020, 295(1): 69-82.
doi: 10.1074/jbc.RA119.009548 pmid: 31740582 |
[26] |
Gao Q, Zhang G, Zheng Y, et al. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC[J]. Cell Death Differ, 2020, 27(3): 1086-1104.
doi: 10.1038/s41418-019-0399-1 pmid: 31367013 |
[27] |
Xie Q, Guo H, He P, et al. Tspan5 promotes epithelial-mesenchymal transition and tumour metastasis of hepatocellular carcinoma by activating notch signalling[J]. Mol Oncol, 2021, 15(11): 3184-3202.
doi: 10.1002/1878-0261.12980 pmid: 33955149 |
[28] | Anderson RA, Schwalbach KT, Mui SR, et al. Zebrafish models of skeletal dysplasia induced by cholesterol biosynthesis deficiency[J]. Dis Model Mech, 2020, 13(6): 042549. |
[29] |
Xu G, Li X, Zhu Z, et al. Iron overload induces apoptosis and cytoprotective autophagy regulated by ROS generation in mc3t3-e1 Cells[J]. Biol Trace Elem Res, 2021, 199(10): 3781-3792.
doi: 10.1007/s12011-020-02508-x pmid: 33405076 |
[30] |
Boucly A, Savale L, Jaïs X, et al. Association between initial treatment strategy and long-term survival in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2021, 204(7): 842-854.
doi: 10.1164/rccm.202009-3698OC URL |
[31] |
Jin Q, Guan L, Pan W, et al. Initial triple combination therapy for intermediate-and high-risk pulmonary arterial hypertension: Standard of care or still too soon to tell?[J]. Am J Respir Crit Care Med, 2021, 204(12): 1491-1492.
doi: 10.1164/rccm.202107-1622LE URL |
[32] | López-vilella R, Lozano-edo S, Arenas MP, et al. Impact of intravenous ferric carboxymaltose on heart failure with preserved and reduced ejection fraction[J]. ESC Heart Fail, 2022, 9(1): 133-145. |
[33] |
Saluja P, Gautam N, Amisha F, et al. Influence of iron deficiency on clinical and haemodynamic parameters in pulmonary arterial hypertension cohorts[J]. Heart Lung Circ, 2022, 31(12): 1594-1603.
doi: 10.1016/j.hlc.2022.09.001 pmid: 36402703 |
[34] |
Pasricha SR, Tye-din J, Muckenthaler MU, et al. Iron deficiency[J]. Lancet, 2021, 397(10270): 233-248.
doi: 10.1016/S0140-6736(20)32594-0 URL |
[35] |
Culeddu G, Su L, Cheng Y, et al. Novel oral iron therapy for iron deficiency anaemia: how to value safety in a new drug?[J]. Br J Clin Pharmacol, 2022, 88(3): 1347-1357.
doi: 10.1111/bcp.v88.3 URL |
[36] |
Alharbi AA, Alharbi AA, Bashen DS, et al. Evaluation of minimal optimal dose of intravenous ferric carboxymaltose for treatment of iron deficiency anemia and risk of transient hyperferritinemia[J]. J Blood Med, 2022, 13: 681-690.
doi: 10.2147/JBM.S374780 pmid: 36419736 |
[37] |
Arici AM, Kumral Z, Gelal A, et al. Fatal anaphylactic reaction due to ferric carboxymaltose: A case report[J]. Anatol J Cardiol, 2020, 24(2): 115-117.
doi: 10.14744/AnatolJCardiol.2020.38996 pmid: 32749249 |
[38] |
Boots JMM, Quax RAM. High-dose intravenous iron with either ferric carboxymaltose or ferric derisomaltose: A benefit-risk assessment[J]. Drug Saf, 2022, 45(10): 1019-1036.
doi: 10.1007/s40264-022-01216-w |
[39] |
Rosati A, Conti P, Berto P, et al. Efficacy, safety and pharmacoeconomic analysis of intravenous ferric carboxymaltose in anemic hemodialysis patients unresponsive to ferric gluconate treatment: a multicenter retrospective study[J]. J Clin Med, 2022, 11(18):5284.
doi: 10.3390/jcm11185284 URL |
[40] |
Hu S, Liu L, Pollock RF, et al. Intravenous iron for the treatment of iron deficiency anemia in China: A patient-level simulation model and cost-utility analysis comparing ferric derisomaltose with iron sucrose[J]. J Med Econ, 2022, 25(1): 561-570.
doi: 10.1080/13696998.2022.2065092 URL |
[41] |
Sinclair RCF, Nadaraja S, Kennedy NA, et al. Real-world experience of intravenous ferric derisomaltose evaluated through safety and efficacy reporting in the UK[J]. Sci Rep, 2022, 12(1): 18859.
doi: 10.1038/s41598-022-23581-3 pmid: 36344720 |
[42] | Cheng HY, Frise MC, Curtis MK, et al. Intravenous iron delivers a sustained (8-week) lowering of pulmonary artery pressure during exercise in healthy older humans[J]. Physiol Rep, 2019, 7(13): e14164. |
[43] |
Howard LS, Watson GM, Wharton J, et al. Supplementation of iron in pulmonary hypertension: Rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension[J]. Pulm Circ, 2013, 3(1): 100-107.
doi: 10.4103/2045-8932.109923 pmid: 23662181 |
[44] |
Ferreira MB, Saraiva FA, Fonseca T, et al. Clinical associations and prognostic implications of 6-minute walk test in rheumatoid arthritis[J]. Sci Rep, 2022, 12(1): 18672.
doi: 10.1038/s41598-022-21547-z pmid: 36333405 |
[45] |
Ghio S, Fortuni F, Capettini AC, et al. Iron deficiency in pulmonary arterial hypertension: prevalence and potential usefulness of oral supplementation[J]. Acta Cardiol, 2021, 76(2): 162-167.
doi: 10.1080/00015385.2019.1694760 URL |
[46] |
Olsson KM, Fuge J, Brod T, et al. Oral iron supplementation with ferric maltol in patients with pulmonary hypertension[J]. Eur Respir J, 2020, 56(5):2000616.
doi: 10.1183/13993003.00616-2020 URL |
[47] |
Viethen T, Gerhardt F, Dumitrescu D, et al. Ferric carboxymaltose improves exercise capacity and quality of life in patients with pulmonary arterial hypertension and iron deficiency: A pilot study[J]. Int J Cardiol, 2014, 175(2): 233-239.
doi: 10.1016/j.ijcard.2014.04.233 pmid: 24880481 |
[48] |
Akaslan D, Aslanger E, Ataş H, et al. The Effects of iron replacement on functional capacity in patients with group 1 and group 4 pulmonary hypertension[J]. Turk Kardiyol Dern Ars, 2022, 50(7): 492-497.
doi: 10.5543/tkda.2022.22343 pmid: 36200717 |
[49] |
Ruiter G, Manders E, Happé CM, et al. Intravenous iron therapy in patients with idiopathic pulmonary arterial hypertension and iron deficiency[J]. Pulm Circ, 2015, 5(3): 466-472.
doi: 10.1086/682217 pmid: 26401247 |
[50] | Theobald V, Grünig E, Benjamin N, et al. Is iron deficiency caused by BMPR2 mutations or dysfunction in pulmonary arterial hypertension patients?[J]. Pulm Circ, 2023, 13(2): e12242. |
[51] |
Howard L, He J, Watson GMJ, et al. Supplementation with iron in pulmonary arterial hypertension:two randomized crossover trials[J]. Ann Am Thorac Soc, 2021, 18(6): 981-988.
doi: 10.1513/AnnalsATS.202009-1131OC pmid: 33735594 |
[52] |
Ruiter G, Lankhorst S, Boonstra A, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension[J]. Eur Respir J, 2011, 37(6): 1386-1391.
doi: 10.1183/09031936.00100510 pmid: 20884742 |
[1] | . [J]. Clinical Focus, 2024, 39(2): 188-192. |
[2] | Wei Qingyuan, Yin Xufang, Li Jiaojiao. Application of BNP, Hcy, AVP, CPT in disease development and efficacy evaluation of patients with chronic pulmonary heart disease [J]. Clinical Focus, 2021, 36(7): 600-603. |
[3] | . [J]. CLINICAL FOCUS, 2013, 28(10): 1164-1166. |
[4] | . [J]. Clinical Focus, 2012, 27(18): 1624-1626. |
[5] | . [J]. CLINICAL FOCUS, 2011, 26(19): 1730-1732. |
[6] | . [J]. CLINICAL FOCUS, 2010, 25(1): 68-69. |
[7] | ZHANG Yu-qing;ZHANG Xiu-wei;ZHU Ying;YANG Jian. Effect of atorvastatin on right ventricular function in chronic obstructive pulmonary disease patients with chronic cor pulmonale [J]. CLINICAL FOCUS, 2009, 24(22): 1933-1936. |
[8] | ZHU Yan-hui;SONG Qiao-feng;WANG Xi-zhu;JIA Hong-juan;LIU Chun-rong;YAO Yan-min;DONG Yan. Different doses of atorvastatin on serum lipids, big-endothelines,brain natriuretic peptide and pulmonary artery pressure in hyperlipidemic patients with chronic cor pulmonale [J]. CLINICAL FOCUS, 2009, 24(7): 567-570. |
[9] | . [J]. CLINICAL FOCUS, 2009, 24(3): 248-249. |
[10] | . [J]. CLINICAL FOCUS, 2008, 23(7): 490-491. |
[11] | . [J]. CLINICAL FOCUS, 2008, 23(3): 184-185. |
[12] | . [J]. CLINICAL FOCUS, 2007, 22(23): 1697-1697. |
[13] | . [J]. CLINICAL FOCUS, 2007, 22(18): 1367-1368. |
[14] | . [J]. CLINICAL FOCUS, 2006, 21(20): 1490-1491. |
[15] | . [J]. CLINICAL FOCUS, 2005, 20(23): 1367-1368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||