Clinical Focus ›› 2022, Vol. 37 ›› Issue (8): 743-747.doi: 10.3969/j.issn.1004-583X.2022.08.013
• Original article • Previous Articles Next Articles
Received:
2022-02-17
Online:
2022-08-20
Published:
2022-09-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.08.013
作者 | 病种 | 评估工具 | VR干预 | 改善方面 | 可能机制 | |||
---|---|---|---|---|---|---|---|---|
干预 方式 | 沉浸 程度 | 时间 | 干预频率 | |||||
Anderson-Hanley 2012[ | 正常老年人 | MMSE、Stroop C | 游戏 | 半沉浸式 | 8周 | 5次/周,45 min/次 | 认知功能、自理能力 | BDNF增加 |
Liao 2020[ | MCI | TMT、SCWT、步态性能评估 | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 知觉-运动功能、执行功能、注意力、自理能力 | 认知刺激 |
Torpil 2021[ | MCI | LOTCA-G | 游戏 | 沉浸式 | 12周 | 2次/周,45 min/次 | 知觉-运动功能、认知功能、注意力 | 认知刺激 |
Liao 2019[ | MCI | Moca、IADL | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 执行功能、注意力、语言能力 | 神经可塑性 |
Riaz 2021[ | MCI | Moca | 游戏 | 沉浸式 | 6周 | 2次/周,40 min/次 | 认知功能、心理功能 | 环境刺激 |
Bahar-Fuchs 2019[ | 正常老年人、痴呆症 | MMSE、ACE-III | 游戏 | 沉浸式 | 6周 | 2次/周,45~60 min/次 | 知觉-运动功能、学习和记忆能力 | 认知刺激 |
Oliveira 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 2周 | 2次/周,45 min/次 | 认知功能 | 认知储备 |
Serino 2017[ | AD | MMSE、Fab | 任务 | 半沉浸式 | 3~ 4周 | 3次/周,10~15 min/次 | 知觉-运动功能、执行功能 | 认知刺激;增强额叶和海马体功能;神经可塑性 |
Doniger 2018[ | AD | MRI | 任务 | 沉浸式 | 12周 | 2次/周,45 min/次 | 认知功能、执行功能、学习和记忆能力 | 认知储备;神经可塑性;激活前额叶和海马体 |
White 2016[ | AD | Moca、MMSE | 任务 | 沉浸式 | 7周 | 3次/周,45 min/次 | 认知功能、学习和记忆能力、自理能力、幸福感 | 认知储备;激活海马体;BDNF增加 |
Panerai 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 8周 | 5次/周 60 min/次 | 自理能力 | 认知刺激 |
Bauer 2020[ | 正常老年人 | Moca | 任务 | 沉浸式 | 6周 | 2次/周,30 min/次 | 认知功能、执行功能、注意力、幸福感 | 认知刺激 |
Delbroek 2017[ | 正常老年人 | Moca、IMI | 任务 | 非沉浸式 | 6周 | 12次/周,30 min/次 | 注意力、记忆力、 平衡力 | 未提 |
Maeng 2021[ | MCI | 数字广度试验、Stroop-C | 任务 | 沉浸式 | 4周 | 2次/周,50 min/次 | 学习和记忆,额叶功能方面的认知改善 | 额叶激活,认知 刺激 |
Hwang 2017[ | MCI | MMSE、视觉广度测试 | 任务 | 半沉浸式 | 4周 | 5次/周,30 min/次 | 缓解抑郁,改善认知和平衡能力 | 未提 |
作者 | 病种 | 评估工具 | VR干预 | 改善方面 | 可能机制 | |||
---|---|---|---|---|---|---|---|---|
干预 方式 | 沉浸 程度 | 时间 | 干预频率 | |||||
Anderson-Hanley 2012[ | 正常老年人 | MMSE、Stroop C | 游戏 | 半沉浸式 | 8周 | 5次/周,45 min/次 | 认知功能、自理能力 | BDNF增加 |
Liao 2020[ | MCI | TMT、SCWT、步态性能评估 | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 知觉-运动功能、执行功能、注意力、自理能力 | 认知刺激 |
Torpil 2021[ | MCI | LOTCA-G | 游戏 | 沉浸式 | 12周 | 2次/周,45 min/次 | 知觉-运动功能、认知功能、注意力 | 认知刺激 |
Liao 2019[ | MCI | Moca、IADL | 任务 | 沉浸式 | 12周 | 3次/周,60 min/次 | 执行功能、注意力、语言能力 | 神经可塑性 |
Riaz 2021[ | MCI | Moca | 游戏 | 沉浸式 | 6周 | 2次/周,40 min/次 | 认知功能、心理功能 | 环境刺激 |
Bahar-Fuchs 2019[ | 正常老年人、痴呆症 | MMSE、ACE-III | 游戏 | 沉浸式 | 6周 | 2次/周,45~60 min/次 | 知觉-运动功能、学习和记忆能力 | 认知刺激 |
Oliveira 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 2周 | 2次/周,45 min/次 | 认知功能 | 认知储备 |
Serino 2017[ | AD | MMSE、Fab | 任务 | 半沉浸式 | 3~ 4周 | 3次/周,10~15 min/次 | 知觉-运动功能、执行功能 | 认知刺激;增强额叶和海马体功能;神经可塑性 |
Doniger 2018[ | AD | MRI | 任务 | 沉浸式 | 12周 | 2次/周,45 min/次 | 认知功能、执行功能、学习和记忆能力 | 认知储备;神经可塑性;激活前额叶和海马体 |
White 2016[ | AD | Moca、MMSE | 任务 | 沉浸式 | 7周 | 3次/周,45 min/次 | 认知功能、学习和记忆能力、自理能力、幸福感 | 认知储备;激活海马体;BDNF增加 |
Panerai 2021[ | AD | MMSE、IADL | 任务 | 非沉浸式 | 8周 | 5次/周 60 min/次 | 自理能力 | 认知刺激 |
Bauer 2020[ | 正常老年人 | Moca | 任务 | 沉浸式 | 6周 | 2次/周,30 min/次 | 认知功能、执行功能、注意力、幸福感 | 认知刺激 |
Delbroek 2017[ | 正常老年人 | Moca、IMI | 任务 | 非沉浸式 | 6周 | 12次/周,30 min/次 | 注意力、记忆力、 平衡力 | 未提 |
Maeng 2021[ | MCI | 数字广度试验、Stroop-C | 任务 | 沉浸式 | 4周 | 2次/周,50 min/次 | 学习和记忆,额叶功能方面的认知改善 | 额叶激活,认知 刺激 |
Hwang 2017[ | MCI | MMSE、视觉广度测试 | 任务 | 半沉浸式 | 4周 | 5次/周,30 min/次 | 缓解抑郁,改善认知和平衡能力 | 未提 |
[1] |
Sachdev PS, Blacker D, Blazer DG, et al. Classifying neurocognitive disorders: The DSM-5 approach[J]. Nat Rev Neurol, 2014, 10(11): 634-642.
doi: 10.1038/nrneurol.2014.181 pmid: 25266297 |
[2] |
Jin R, Pilozzi A, Huang X. Current cognition tests, potential virtual reality applications, and serious games in cognitive assessment and non-pharmacological therapy for neurocognitive disorders[J]. J Clin Med, 2020, 9(10):3287.
doi: 10.3390/jcm9103287 URL |
[3] |
Zhu S, Sui Y, Shen Y, et al. Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis[J]. Front Aging Neurosci, 2021, 13: 586999.
doi: 10.3389/fnagi.2021.586999 URL |
[4] | Freeman D, Rosebrock L, Waite F, et al. Virtual reality (VR) therapy for patients with psychosis: Satisfaction and side effects[J]. Psychol Med, 2022: 1-12. |
[5] |
García-Betances RI, Arredondo Waldmeyer MT, Fico G, et al. A succinct overview of virtual reality technology use in Alzheimer's disease[J]. Front Aging Neurosci, 2015, 7: 80.
doi: 10.3389/fnagi.2015.00080 pmid: 26029101 |
[6] |
Sern Y. Cognitive reserve in ageing and Alzheimer's disease[J]. The Lancet Neurology, 2012, 11(11): 1006-1012.
doi: 10.1016/S1474-4422(12)70191-6 URL |
[7] |
Vacas S, Degos V, Maze M. Fragmented sleep enhances postoperative neuroinflammation but not cognitive dysfunction[J]. Anesth Analg, 2017, 124(1): 270-276.
pmid: 27755058 |
[8] |
Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline[J]. Br Med Bull, 2009, 92: 135-152.
doi: 10.1093/bmb/ldp033 URL |
[9] |
Mondini S, Madella I, Zangrossi A, et al. Cognitive reserve in dementia: Implications for cognitive training[J]. Front Aging Neurosci, 2016, 8: 84.
doi: 10.3389/fnagi.2016.00084 pmid: 27199734 |
[10] |
Feng X, Uchida Y, Koch L, et al. Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut microbiome in a rat model of metabolic syndrome[J]. Front Immunol, 2017, 8: 1768.
doi: 10.3389/fimmu.2017.01768 pmid: 29321779 |
[11] |
Anderson-Hanley C, Arciero PJ, Brickman AM, et al. Exergaming and older adult cognition: A cluster randomized clinical trial[J]. Am J Prev Med, 2012, 42(2): 109-119.
doi: 10.1016/j.amepre.2011.10.016 pmid: 22261206 |
[12] |
Zajᶏc-Lamparska L, Wiłko's'c-Dębczyńska M, Wojciechowski A, et al. Effects of virtual reality-based cognitive training in older adults living without and with mild dementia: A pretest-posttest design pilot study[J]. BMC Res Notes, 2019, 12(1): 776.
doi: 10.1186/s13104-019-4810-2 URL |
[13] | Sakaki K, Nouchi R, Matsuzaki Y, et al. Benefits of VR physical exercise on cognition in older adults with and without mild cognitive decline: A systematic review of randomized controlled trials[J]. Healthcare (Basel), 2021, 9(7):883. |
[14] |
Gamito P, Oliveira J, Alves C, et al. Virtual reality-based cognitive stimulation to improve cognitive functioning in community elderly: A controlled study[J]. Cyberpsychol Behav Soc Netw, 2020, 23(3):150-156.
doi: 10.1089/cyber.2019.0271 URL |
[15] | Liao YY, Tseng HY, Lin YJ, et al. Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment[J]. Eur J Phys Rehabil Med, 2020, 56(1): 47-57. |
[16] |
Torpil B, Sahin S, Pekcetin S, et al. The effectiveness of a virtual reality-based intervention on cognitive functions in older adults with mild cognitive impairment: A single-blind, randomized controlled trial[J]. Games Health J, 2021, 10(2): 109-114.
doi: 10.1089/g4h.2020.0086 pmid: 33058735 |
[17] |
Arlati S, Di Santo SG, Franchini F, et al. Acceptance and usability of immersive virtual reality in older adults with objective and subjective cognitive decline[J]. J Alzheimers Dis, 2021, 80(3): 1025-1038.
doi: 10.3233/JAD-201431 pmid: 33646164 |
[18] |
Bott NT, Hall A, Madero EN, et al. Face-to-face and digital multidomain lifestyle interventions to enhance cognitive reserve and reduce risk of Alzheimer's disease and related dementias: A review of completed and prospective studies[J]. Nutrients, 2019, 11(9):2258.
doi: 10.3390/nu11092258 URL |
[19] |
Liao YY, Chen IH, Lin YJ, et al. Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial[J]. Front Aging Neurosci, 2019, 11: 162.
doi: 10.3389/fnagi.2019.00162 URL |
[20] |
Riaz W, Khan ZY, Jawaid A, et al. Virtual reality (VR)-based environmental enrichment in older adults with mild cognitive impairment (MCI) and mild dementia[J]. Brain Sci, 2021, 11(8):1103.
doi: 10.3390/brainsci11081103 URL |
[21] | 2020 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2020. |
[22] |
Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: A systematic review and meta analysis[J]. Alzheimers Dement, 2013, 9(1): 63-75.e2.
doi: 10.1016/j.jalz.2012.11.007 URL |
[23] |
Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: A systematic review[J]. Int Psychogeriatr, 2014, 26(1): 9-18.
doi: 10.1017/S1041610213001385 pmid: 23962667 |
[24] |
Aguirre E, Woods RT, Spector A, et al. Cognitive stimulation for dementia: A systematic review of the evidence of effectiveness from randomised controlled trials[J]. Ageing Res Rev, 2013, 12(1): 253-262.
doi: 10.1016/j.arr.2012.07.001 pmid: 22889599 |
[25] | Bahar-Fuchs A, Martyr A, Goh AM, et al. Cognitive training for people with mild to moderate dementia[J]. Cochrane Database Syst Rev, 2019, 3(3): Cd013069. |
[26] |
Watt JA, Goodarzi Z, Veroniki AA, et al. Comparative efficacy of interventions for aggressive and agitated behaviors in dementia: A systematic review and network meta-analysis[J]. Ann Intern Med, 2019, 171(9): 633-642.
doi: 10.7326/M19-0993 pmid: 31610547 |
[27] |
Kim O, Pang Y, Kim JH. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A meta-analysis[J]. BMC Psychiatry, 2019, 19(1): 219.
doi: 10.1186/s12888-019-2180-x pmid: 31299921 |
[28] |
Hofmann M, Rösler A, Schwarz W, et al. Interactive computer-training as a therapeutic tool in Alzheimer’s disease[J]. Comprehensive Psychiatry, 2003, 44(3): 213-219.
pmid: 12764709 |
[29] |
Oliveira J, Gamito P, Souto T, et al. Virtual Reality-based cognitive stimulation on people with mild to moderate dementia due to Alzheimer’s disease: A pilot randomized controlled trial[J]. Int J Environ Res Public Health, 2021, 18(10):5290.
doi: 10.3390/ijerph18105290 URL |
[30] |
Serino S, Pedroli E, Tuena C, et al. A novel virtual reality-based training protocol for the enhancement of the “mental frame syncing” in individuals with Alzheimer's disease: A development-of-concept trial[J]. Front Aging Neurosci, 2017, 9: 240.
doi: 10.3389/fnagi.2017.00240 URL |
[31] |
Doniger GM, Beeri MS, Bahar-Fuchs A, et al. Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer's disease risk: A randomized controlled trial[J]. Alzheimers Dement (N Y), 2018, 4: 118-129.
doi: 10.1016/j.trci.2018.02.005 pmid: 29955655 |
[32] |
White PJ, Moussavi Z. Neurocognitive treatment for a patient with Alzheimer's disease using a virtual reality navigational environment[J]. J Exp Neurosci, 2016, 10: 129-135.
pmid: 27840579 |
[33] |
Battle DE. Diagnostic and Statistical Manual of Mental Disorders (DSM)[J]. Codas, 2013, 25(2): 191-192.
doi: S2317-17822013000200017 pmid: 24413388 |
[34] |
Panerai S, Gelardi D, Catania V, et al. Functional living skills: A non-immersive virtual reality training for individuals with major neurocognitive disorders[J]. Sensors (Basel), 2021, 21(17):5751.
doi: 10.3390/s21175751 URL |
[35] |
Bauer ACM, Andringa G. The potential of immersive virtual reality for cognitive training in elderly[J]. Gerontology, 2020, 66(6): 614-623.
doi: 10.1159/000509830 URL |
[36] |
Delbroek T, Vermeylen W, Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial[J]. J Phys Ther Sci, 2017, 29(7): 1137-1143.
doi: 10.1589/jpts.29.1137 pmid: 28744033 |
[37] |
Maeng S, Hong JP, Kim WH, et al. Effects of virtual reality-based cognitive training in the elderly with and without mild cognitive impairment[J]. Psychiatry Investig, 2021, 18(7): 619-627.
doi: 10.30773/pi.2020.0446 URL |
[38] |
Hwang J, Lee S. The effect of virtual reality program on the cognitive function and balance of the people with mild cognitive impairment[J]. J Phys Ther Sci, 2017, 29(8): 1283-1286.
doi: 10.1589/jpts.29.1283 pmid: 28878448 |
[39] |
Greenwood PM. The frontal aging hypothesis evaluated[J]. J Int Neuropsychol Soc, 2000, 6(6): 705-726.
doi: 10.1017/S1355617700666092 URL |
[40] |
Habib R, Nyberg L, Tulving E. Hemispheric asymmetries of memory: The HERA model revisited[J]. Trends Cogn Sci, 2003, 7(6): 241-245.
pmid: 12804689 |
[41] |
Lin X, Chen Y, Zhang P, et al. The potential mechanism of postoperative cognitive dysfunction in older people[J]. Experimental Gerontology, 2020, 130:110791.
doi: 10.1016/j.exger.2019.110791 URL |
[42] |
Fan D, Li J, Zheng B, et al. Enriched environment attenuates surgery-induced impairment of learning, memory, and neurogenesis possibly by preserving BDNF expression[J]. Mol Neurobiol, 2016, 53(1): 344-354.
doi: 10.1007/s12035-014-9013-1 pmid: 25432890 |
[43] |
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: The role of enrichment in remediating brain injury[J]. Front Syst Neurosci, 2014, 8: 156.
doi: 10.3389/fnsys.2014.00156 pmid: 25228861 |
[44] |
Harvey CD, Collman F, Dombeck DA, et al. Intracellular dynamics of hippocampal place cells during virtual navigation[J]. Nature, 2009, 461(7266): 941-946.
doi: 10.1038/nature08499 URL |
[45] |
Okonkwo OC, Xu G, et al. Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of Alzheimer's disease[J]. Cereb Cortex, 2014, 24(4): 978-988.
doi: 10.1093/cercor/bhs381 pmid: 23236200 |
[46] |
Waterhouse EG, An JJ, Orefice LL, et al. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission[J]. J Neurosci, 2012, 32(41): 14318-14330.
doi: 10.1523/JNEUROSCI.0709-12.2012 pmid: 23055503 |
[47] |
Faria AL, Andrade A, Soares L, et al. Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients[J]. J Neuroeng Rehabil, 2016, 13(1): 96.
pmid: 27806718 |
[48] |
Hua M, Min J. Postoperative cognitive dysfunction and the protective effects of enriched environment: A systematic review[J]. Neurodegener Dis, 2020, 20(4): 113-122.
doi: 10.1159/000513196 pmid: 33601385 |
[1] | Li Ping, Xu Manhua, He Lanying, Wang Lifeng, Zhang Pei, Song Lihua. Aripiprazole and olanzapine on senile dementia of the alzheimer type: A control study [J]. Clinical Focus, 2022, 37(8): 699-703. |
[2] | . [J]. Clinical Focus, 2021, 36(5): 476-480. |
[3] | . [J]. Clinical Focus, 2015, 30(5): 569-572. |
[4] | . [J]. Clinical Focus, 2014, 29(1): 92-96. |
[5] | CHEN Yu-sen;LIU Liang-fang;LIN Zhi-jun;XIAN Wen-chuan;ZHONG Wang-tao;ZHAO Bin;XU Zhi-en. Association of autophagy-related gene 5 tag single-nucleotide polymorphism and haplotype with Parkinson disease [J]. Clinical Focus, 2012, 27(8): 672-675680. |
[6] | . [J]. CLINICAL FOCUS, 2010, 25(12): 1080-1081. |
[7] | . [J]. CLINICAL FOCUS, 2010, 25(11): 958-960. |
[8] | SUN Feng;XING Yong-hong;KONG Ping;ZHANG Ben-shu;ZHANG Yun-ting. Study of 1H magnetic resonance spectroscopy in Parkinson disease with dementia [J]. CLINICAL FOCUS, 2010, 25(5): 401-404. |
[9] | . [J]. CLINICAL FOCUS, 2009, 24(10): 918-920. |
[10] | WANG Hong-mei;GE Xu-hua;ZHOU Lian-sheng;GENG De-qin. Clinical observation on safety and efficacy of donepezil in treating Alzheimer disease [J]. CLINICAL FOCUS, 2006, 21(7): 475-476. |
[11] | . [J]. CLINICAL FOCUS, 2005, 20(19): 1100-1101. |
[12] | . [J]. CLINICAL FOCUS, 2005, 20(14): 810-811. |
[13] | . [J]. CLINICAL FOCUS, 2004, 19(19): 1115-1116. |
[14] | . [J]. CLINICAL FOCUS, 2004, 19(15): 888-888. |
[15] | . Clinical observation about the therapy of Sweet Dream Oral Liquid to anxiety neurosis and cerebral hypofunction resulted from cerebral infarction [J]. CLINICAL FOCUS, 2004, 19(9): 499-501. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||