Clinical Focus ›› 2022, Vol. 37 ›› Issue (8): 748-752.doi: 10.3969/j.issn.1004-583X.2022.08.014
• Original article • Previous Articles Next Articles
Received:
2022-03-26
Online:
2022-08-20
Published:
2022-09-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.08.014
疾病分类 | 类型 | 特异性改变 |
---|---|---|
MCI | rsEEG | 枕叶顶叶:α功率下降、δ和θ波功率升高、δ和θ波功率比值升高[ |
ERP | P300潜伏期延长[ | |
脑网络 | α频段中,EEG电流源密度连接性降低[ | |
aMCI | rsEEG | 顶叶:β1频段功率下降[ |
ERP | N200和P300的潜伏期增加[ | |
脑网络 | 左侧额叶与枕叶之间、左侧中央区与内侧顶叶之间以及左侧中央与右侧顶叶脑区之间的区域间连接水平降低[ | |
AD | rsEEG | 额叶及颞叶:θ波功率升高[ |
ERP | P200、N100、N200和P300的潜伏期延长、β-ERS振幅降低[ | |
脑网络 | PC神经活动增加,β频段的脑振荡增强,PC和额叶内侧区域之间的功能连接水平改变[ |
疾病分类 | 类型 | 特异性改变 |
---|---|---|
MCI | rsEEG | 枕叶顶叶:α功率下降、δ和θ波功率升高、δ和θ波功率比值升高[ |
ERP | P300潜伏期延长[ | |
脑网络 | α频段中,EEG电流源密度连接性降低[ | |
aMCI | rsEEG | 顶叶:β1频段功率下降[ |
ERP | N200和P300的潜伏期增加[ | |
脑网络 | 左侧额叶与枕叶之间、左侧中央区与内侧顶叶之间以及左侧中央与右侧顶叶脑区之间的区域间连接水平降低[ | |
AD | rsEEG | 额叶及颞叶:θ波功率升高[ |
ERP | P200、N100、N200和P300的潜伏期延长、β-ERS振幅降低[ | |
脑网络 | PC神经活动增加,β频段的脑振荡增强,PC和额叶内侧区域之间的功能连接水平改变[ |
[1] |
Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment[J]. Arch Neurol, 2001, 58(12): 1985-1992.
doi: 10.1001/archneur.58.12.1985 URL |
[2] |
Canevelli M, Grande G, Lacorte E, et al. Spontaneous reversion of mild cognitive impairment to normal cognition: A systematic review of literature and meta-analysis[J]. J Am Med Dir Assoc, 2016, 17(10):943-948.
doi: 10.1016/j.jamda.2016.06.020 pmid: 27502450 |
[3] |
Zhuang L, Yang Y, Gao J. Cognitive assessment tools for mild cognitive impairment screening[J]. J Neurol, 2021, 268(5):1615-1622.
doi: 10.1007/s00415-019-09506-7 URL |
[4] |
Ingber L, Nunez PL. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs[J]. Math Biosci, 2011, 229(2):160-173.
doi: 10.1016/j.mbs.2010.12.003 pmid: 21167841 |
[5] |
Babiloni C, Barry RJ, Başar E, et al. International Federation of Clinical Neurophysiology (IFCN)-EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies[J]. Clin Neurophysiol, 2020, 131(1):285-307.
doi: S1388-2457(19)31164-2 pmid: 31501011 |
[6] |
Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis[J]. Brain Res Rev, 2007, 53(1):63-88.
doi: 10.1016/j.brainresrev.2006.06.003 pmid: 16887192 |
[7] |
Horvath A, Szucs A, Csukly G, et al. EEG and ERP biomarkers of Alzheimer's disease: A critical review[J]. Front Biosci (Landmark Ed), 2018, 23:183-220.
pmid: 28930543 |
[8] |
Babiloni C, Cassetta E, Binetti G, et al. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease[J]. Eur J Neurosci, 2007, 25(12):3742-3757.
pmid: 17610594 |
[9] |
Bucht G, Adolfsson R, Winblad B. Dementia of the Alzheimer type and multi-infarct dementia: A clinical description and diagnostic problems[J]. J Am Geriatr Soc, 1984, 32(7):491-498.
pmid: 6203954 |
[10] |
Gawel M, Zalewska E, Szmidt-Sałkowska E, et al. The value of quantitative EEG in differential diagnosis of Alzheimer's disease and subcortical vascular dementia[J]. J Neurol Sci, 2009, 283(1-2):127-133.
doi: 10.1016/j.jns.2009.02.332 pmid: 19268969 |
[11] | 莫延红, 孔朝红, 张兆辉. 定量脑电图在大面积脑梗死中的临床应用进展[J]. 中国医药, 2020, 15(7):1140-1143. |
[12] |
Koberda JL. QEEG as a useful tool for the evaluation of early cognitive changes in dementia and traumatic brain injury[J]. Clin EEG Neurosci, 2021, 52(2):119-125.
doi: 10.1177/1550059420914816 URL |
[13] |
Al-Qazzaz NK, Ali S, Ahmad SA, et al. Discrimination of stroke-related mild cognitive impairment and vascular dementia using EEG signal analysis[J]. Med Biol Eng Comput, 2018, 56(1):137-157.
doi: 10.1007/s11517-017-1734-7 pmid: 29119540 |
[14] |
Neto E, Allen EA, Aurlien H, et al. EEG spectral features discriminate between Alzheimer's and vascular dementia[J]. Front Neurol, 2015, 6:25.
doi: 10.3389/fneur.2015.00025 pmid: 25762978 |
[15] | Lv Y, Chen H, Sui Z, et al. Spectrum-specific encephalography standardized low-resolution brain electromagnetic tomography network and gray matter correlations in vascular dementia patients[J]. I J D S N, 2020, 16(1): 1-7. |
[16] |
Rogala J, Kublik E, Krauz R, et al. Resting-state EEG activity predicts frontoparietal network reconfiguration and improved attentional performance[J]. Sci Rep, 2020, 10(1):5064.
doi: 10.1038/s41598-020-61866-7 pmid: 32193502 |
[17] |
Gazibera B, Suljic-Mehmedika E, Serdarevic N, et al. Predictive role of electroencephalography in regard to neurological and cognitive sequelae after acute central nervous system infection[J]. Acta Inform Med, 2019, 27(4): 234-239.
doi: 10.5455/aim.2019.27.234-239 pmid: 32055089 |
[18] |
Choi J, Ku B, You YG, et al. Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals[J]. Sci Rep, 2019, 9(1):10468.
doi: 10.1038/s41598-019-46789-2 pmid: 31320666 |
[19] |
Hünerli D, Emek-Savaş DD, Çavuşoˇglu B, et al. Mild cognitive impairment in Parkinson's disease is associated with decreased P300 amplitude and reduced putamen volume[J]. Clin Neurophysiol, 2019, 130(8):1208-1217.
doi: S1388-2457(19)30450-X pmid: 31163365 |
[20] |
Crunelli V, David F, Lörincz ML, et al. The thalamocortical network as a single slow wave-generating unit[J]. Curr Opin Neurobiol, 2015, 31:72-80.
doi: 10.1016/j.conb.2014.09.001 pmid: 25233254 |
[21] |
Morrison C, Rabipour S, Knoefel F, et al. Auditory event-related potentials in mild cognitive impairment and Alzheimer's disease[J]. Curr Alzheimer Res, 2018, 15(8):702-715.
doi: 10.2174/1567205015666180123123209 pmid: 29359668 |
[22] |
Tarawneh HY, Mulders W, Sohrabi HR, et al. Investigating auditory electrophysiological measures of participants with mild cognitive impairment and Alzheimer's disease: A systematic review and meta-analysis of event-related potential studies[J]. J Alzheimers Dis, 2021, 84(1): 419-448.
doi: 10.3233/JAD-210556 pmid: 34569950 |
[23] |
Cintra M, Ávila RT, Soares TO, et al. Increased N200 and P300 latencies in cognitively impaired elderly carrying ApoE ε-4 allele[J]. Int J Geriatr Psychiatry, 2018, 33(2):e221-e227.
doi: 10.1002/gps.4773 URL |
[24] |
Irimajiri R, Golob EJ, Starr A. ApoE genotype and abnormal auditory cortical potentials in healthy older females[J]. Neurobiol Aging, 2010, 31(10):1799-1804.
doi: 10.1016/j.neurobiolaging.2008.09.005 pmid: 18976833 |
[25] |
Zhang C, Kong M, Wei H, et al. The effect of ApoE ε 4 on clinical and structural MRI markers in prodromal Alzheimer's disease[J]. Quant Imaging Med Surg, 2020, 10(2):464-474.
doi: 10.21037/qims.2020.01.14 URL |
[26] |
Missonnier P, Deiber MP, Gold G, et al. Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment[J]. Neuroscience, 2007, 150(2):346-356.
pmid: 17996378 |
[27] |
Fernandez R, Monacelli A, Duffy CJ. Visual motion event related potentials distinguish aging and Alzheimer's disease[J]. J Alzheimers Dis, 2013, 36(1):177-183.
doi: 10.3233/JAD-122053 pmid: 23594601 |
[28] |
Kubová Z, Kremlácek J, Valis M, et al. Visual evoked potentials to pattern, motion and cognitive stimuli in Alzheimer's disease[J]. Doc Ophthalmol, 2010, 121(1):37-49.
doi: 10.1007/s10633-010-9230-5 pmid: 20524039 |
[29] |
Bagattini C, Mazza V, Panizza L, et al. Neural dynamics of multiple object processing in mild cognitive impairment and Alzheimer's disease: Future early diagnostic biomarkers?[J]. J Alzheimers Dis, 2017, 59(2):643-654.
doi: 10.3233/JAD-161274 pmid: 28671112 |
[30] |
Bassett DS, Sporns O. Network neuroscience[J]. Nat Neurosci, 2017, 20(3):353-364.
doi: 10.1038/nn.4502 pmid: 28230844 |
[31] |
Edison P. Brain connectivity: Disrupted structural and functional connectivity-cause or effect?[J]. Brain Connect, 2020, 10(5):200-201.
doi: 10.1089/brain.2020.29011.ped pmid: 32573281 |
[32] |
Youssef N, Xiao S, Liu M, et al. Functional brain networks in mild cognitive impairment based on resting electroencephalography signals[J]. Front Comput Neurosci, 2021, 15:698386.
doi: 10.3389/fncom.2021.698386 URL |
[33] |
Tijms BM, Wink AM, de Haan W, et al. Alzheimer's disease: Connecting findings from graph theoretical studies of brain networks[J]. Neurobiol Aging, 2013, 34(8):2023-2036.
doi: 10.1016/j.neurobiolaging.2013.02.020 pmid: 23541878 |
[34] | Gurja JP, Muthukrishnan SP, Tripathi M, et al. Reduced resting-state cortical alpha connectivity reflects distinct functional brain dysconnectivity in Alzheimer's disease and mild cognitive impairment[J]. Brain Connect, 2022, 12(2): 134-145. |
[35] |
Koch G, Bonnì S, Pellicciari MC, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease[J]. Neuroimage, 2018, 169:302-311.
doi: S1053-8119(17)31072-8 pmid: 29277405 |
[36] |
Ferreri F, Guerra A, Vollero L, et al. TMS-EEG biomarkers of amnestic mild cognitive impairment due to Alzheimer's disease: A proof-of-concept six years prospective study[J]. Front Aging Neurosci, 2021, 13:737281.
doi: 10.3389/fnagi.2021.737281 URL |
[37] |
Lehmann D, Wackermann J, Michel CM, et al. Space-oriented EEG segmentation reveals changes in brain electric field maps under the influence of a nootropic drug[J]. Psychiatry Res, 1993, 50(4):275-282.
doi: 10.1016/0925-4927(93)90005-3 URL |
[38] | Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review[J]. Neuroimage, 2018, 180(Pt B):577-593. |
[39] |
Seitzman BA, Abell M, Bartley SC, et al. Cognitive manipulation of brain electric microstates[J]. Neuroimage, 2017, 146:533-543.
doi: S1053-8119(16)30549-3 pmid: 27742598 |
[40] |
Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics[J]. Neuroimage, 2010, 52(4):1162-1170.
doi: 10.1016/j.neuroimage.2010.02.052 pmid: 20188188 |
[41] |
Smailovic U, Koenig T, Laukka EJ, et al. EEG time signature in Alzheimer's disease: Functional brain networks falling apart[J]. Neuroimage Clin, 2019, 24:102046.
doi: 10.1016/j.nicl.2019.102046 URL |
[42] |
Palmqvist S, Schöll M, Strandberg O, et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity[J]. Nat Commun, 2017, 8(1):1214.
doi: 10.1038/s41467-017-01150-x pmid: 29089479 |
[43] |
Tait L, Tamagnini F, Stothart G, et al. EEG microstate complexity for aiding early diagnosis of Alzheimer's disease[J]. Sci Rep, 2020, 10(1):17627.
doi: 10.1038/s41598-020-74790-7 pmid: 33077823 |
[44] |
Musaeus CS, Nielsen MS, Høgh P. Microstates as disease and progression markers in patients with mild cognitive impairment[J]. Front Neurosci, 2019, 13:563.
doi: 10.3389/fnins.2019.00563 URL |
[45] | Musaeus CS, Engedal K, Høgh P, et al. Changes in the left temporal microstate are a sign of cognitive decline in patients with Alzheimer's disease[J]. Brain Behav, 2020, 10(6):e01630. |
[1] | . [J]. Clinical Focus, 2024, 39(2): 172-176. |
[2] | Xiao Huangyi, Yuan Jiankun, Yan Ziyu, Zeng Wenshu, Lu Lanmo, Wang Jun. Effectiveness of cognitive interventions on elderly patients with amnestic mild cognitive impairment: A meta-analysis [J]. Clinical Focus, 2024, 39(1): 12-19. |
[3] | . [J]. Clinical Focus, 2023, 38(11): 1031-1033. |
[4] | Xiao Wangjing, Li Xinmeng, Lu Songling, Sun Xuehua. Efficacy and safety of repetitive transcranial magnetic stimulation treatment on central neurogenic dysphagia: A meta-analysis [J]. Clinical Focus, 2023, 38(7): 588-599. |
[5] | . [J]. Clinical Focus, 2023, 38(6): 554-558. |
[6] | . [J]. Clinical Focus, 2023, 38(5): 455-458. |
[7] | Jia Yangjuan, Han Ning, Guo Hui, Li Cancan, Li Jianguo. Value of different clock drawing tests in identifying acute post-stroke cognitive impairment no dementia [J]. Clinical Focus, 2023, 38(2): 143-148. |
[8] | Pang Shu, Zhang Mingkai, Bai Hongmei, Wu Yongdong. Congenital insensitivity to pain with anhidrosis: A case report and literature review [J]. Clinical Focus, 2023, 38(1): 64-67. |
[9] | . [J]. Clinical Focus, 2022, 37(12): 1137-1141. |
[10] | Li Zhongmei, Ran Li, Jiang Yi, Guo Zhiwei, Mu Qiwen. Correlations between sleep disorder and cognitive function in elderly patients with mild cognitive impairment [J]. Clinical Focus, 2022, 37(7): 607-611. |
[11] | Luo Weigang, Yin Yuanyuan, Ren Huiling. Analysis and treatment of primary spinal infection [J]. Clinical Focus, 2022, 37(6): 525-529. |
[12] | Xia Jing, Chen Miaocun, Lin Min, Hao Youguo. Effect of high frequency and low frequency repetitive transcranial magnetic stimulation in the treatment of post-stroke spasticity: A comparative study [J]. Clinical Focus, 2022, 37(5): 427-430. |
[13] | Zhai Xiayin, Lan Rui. Relationship between serum irisin, manganese-containing superoxide dismutase and cognitive function of patients with chronic insomnia [J]. Clinical Focus, 2022, 37(4): 329-333. |
[14] | . [J]. Clinical Focus, 2021, 36(12): 1144-1147. |
[15] | Shen Huinan, Guo Chang, Sun Yimeng, Wang Dongyu. Diagnostic efficacy of cystatin C for vascular Parkinsonism [J]. Clinical Focus, 2021, 36(11): 986-990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||