Clinical Focus ›› 2022, Vol. 37 ›› Issue (8): 753-758.doi: 10.3969/j.issn.1004-583X.2022.08.015
• Original article • Previous Articles Next Articles
Received:
2022-07-14
Online:
2022-08-20
Published:
2022-09-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.08.015
[1] |
Pan L, Guo D, Wang J, et al. Alterations in neural oscillations related to working memory deficit in temporal lobe epilepsy[J]. Epilepsy Behav, 2021, 121(Pt A): 108063.
doi: 10.1016/j.yebeh.2021.108063 URL |
[2] |
Bonanni P, Negrin S, Antoniazzi L, et al. Clinical implications of interictal epileptiform discharges in cognitive functioning in CEC syndrome with evolution into epileptic encephalopathy[J]. Neurocase, 2017, 23(3-4): 230-238.
doi: 10.1080/13554794.2017.1380202 pmid: 28929921 |
[3] |
Elsherif M, Esmael A. Hippocampal atrophy and quantitative EEG markers in mild cognitive impairment in temporal lobe epilepsy versus extra-temporal lobe epilepsy[J]. Neurol Sci, 2022, 43(3): 1975-1986.
doi: 10.1007/s10072-021-05540-4 URL |
[4] |
Quon RJ, Camp EJ, Meisenhelter S, et al. Features of intracranial interictal epileptiform discharges associated with memory encoding[J]. Epilepsia, 2021, 62(11): 2615-2626.
doi: 10.1111/epi.17060 pmid: 34486107 |
[5] | Fu X, Wang Y, Belkacem AN, et al. Interictal spike and loss of hippocampal theta rhythm recorded by deep brain electrodes during epileptogenesis[J]. Sensors(Basel), 2022, 22(3): 1114. |
[6] | Oser N, Hubacher M, Nageleisen-Weiss A, et al. 6-year course of sleep homeostasis in a case with epilepsy-aphasia spectrum disorder[J]. Epilepsy Behav Rep, 2021, 16: 100488. |
[7] | Van Iterson L, Vrij S, Sie L TL, et al. Acquired visual agnosia as an uncommon presentation of epileptic encephalopathy in a 6-year-old boy with CSWS[J]. Epilepsy Behav Rep, 2021, 16: 100465. |
[8] | Kalscheur EJ, Farias-Moeller R, Koop J. Role of neuropsychology in identification of CSWS in a school-aged child with a remote neurological insult[J]. Epilepsy Behav Rep, 2022, 18: 100514. |
[9] |
Kuki I, Kawawaki H, Okazaki S, et al. Epileptic encephalopathy with continuous spikes and waves in the occipito-temporal region during slow-wave sleep in two patients with acquired Kanji dysgraphia[J]. Epileptic Disord, 2014, 16(4): 540-555.
doi: 10.1684/epd.2014.0698 pmid: 25333864 |
[10] | Fang HB, Wang R, Chu LN, et al. Cognitive impairment in children with benign childhood epilepsy with centrotemporal spikes and attention deficit hyperactivity disorder: A prospective study[J]. Zhongguo Dang Dai Er Ke Za Zhi, 2021, 23(8): 791-796. |
[11] | Wu L, Yang X, Zhang K, et al. Impairment of eye emotion discrimination in benign childhood epilepsy with centrotemporal spikes: A neuropsychological study[J]. Brain Behav, 2021, 11(6): e02154. |
[12] | Gawelek KL, Gales JM, Prayson RA. Hamartia in hippocampal sclerosis-associated mesial temporal lobe epilepsy[J]. A Ann Diagn Pathol, 2018, 32: 63-66. |
[13] |
Puhahn-Schmeiser B, Leicht K, Gessler F, et al. Aberrant hippocampal mossy fibers in temporal lobe epilepsy target excitatory and inhibitory neurons[J]. Epilepsia, 2021, 62(10): 2539-2550.
doi: 10.1111/epi.17035 pmid: 34453315 |
[14] | Lu CQ, Gosden GP, Okromelidze L, et al. Brain structural differences in temporal lobe and frontal lobe epilepsy patients: A voxel-based morphometry and vertex-based surface analysis[J]. Neuroradiol J, 2022, 35(2): 193-202. |
[15] |
Schomaker J, Grouls MME, Van Der Linden CGM, et al. Novelty processing depends on medial temporal lobe structures[J]. Neurobiol Learn Mem, 2021, 183: 107464.
doi: 10.1016/j.nlm.2021.107464 URL |
[16] |
Ono SE, Mader-Joaquim MJ, De Carvalho Neto A, et al. Relationship between hippocampal subfields and Verbal and Visual memory function in Mesial Temporal Lobe Epilepsy patients[J]. Epilepsy Res, 2021, 175: 106700.
doi: 10.1016/j.eplepsyres.2021.106700 URL |
[17] |
Trimmel K, Vos SB, Caciagli L, et al. Decoupling of functional and structural language networks in temporal lobe epilepsy[J]. Epilepsia, 2021, 62(12): 2941-2954.
doi: 10.1111/epi.17098 pmid: 34642939 |
[18] | Kegel LC, Fruhholz S, Grunwald T, et al. Temporal lobe epilepsy alters neural responses to human and avatar facial expressions in the face perception network[J]. Brain Behav, 2021, 11(6): e02140. |
[19] |
Rayner G, Antoniou M, Jackson G, et al. Compromised future thinking: another cognitive cost of temporal lobe epilepsy[J]. Brain Commun, 2022, 4(2): fcac062.
doi: 10.1093/braincomms/fcac062 URL |
[20] |
Esteso Orduna B, Fournier Del Castillo MC, Camara Barrio S, et al. Cognitive and behavioral profiles of pediatric surgical candidates with frontal and temporal lobe epilepsy[J]. Epilepsy Behav, 2021, 117: 107808.
doi: 10.1016/j.yebeh.2021.107808 URL |
[21] |
Simon JT, Rudebeck PH, Rich EL. From affective to cognitive processing: Functional organization of the medial frontal cortex[J]. Int Rev Neurobiol, 2021, 158: 1-28.
doi: 10.1016/bs.irn.2020.11.011 pmid: 33785142 |
[22] |
Thielen JW, Hong D, Rohani Rankouhi S, et al. The increase in medial prefrontal glutamate/glutamine concentration during memory encoding is associated with better memory performance and stronger functional connectivity in the human medial prefrontal-thalamus-hippocampus network[J]. Hum Brain Mapp, 2018, 39(6): 2381-2390.
doi: 10.1002/hbm.24008 URL |
[23] |
Zyryanov A, Malyutina S, Dragoy O. Left frontal aslant tract and lexical selection: Evidence from frontal lobe lesions[J]. Neuropsychologia, 2020, 147: 107385.
doi: 10.1016/j.neuropsychologia.2020.107385 URL |
[24] |
Yeung MK, Lee TL, Chan AS. Frontal lobe dysfunction underlies the differential word retrieval impairment in adolescents with high-functioning autism[J]. Autism Res, 2019, 12(4): 600-613.
doi: 10.1002/aur.2082 pmid: 30758144 |
[25] |
Berry AS, Sarter M, Lustig C. Distinct frontoparietal networks underlying attentional effort and cognitive control[J]. J Cogn Neurosci, 2017, 29(7): 1212-1225.
doi: 10.1162/jocn_a_01112 URL |
[26] |
Battaglia-Mayer A, Caminiti R. Parieto-frontal networks for eye-hand coordination and movements[J]. Handb Clin Neurol, 2018, 151: 499-524.
doi: B978-0-444-63622-5.00026-7 pmid: 29519477 |
[27] |
Bilo L, Santangelo G, Improta I, et al. Neuropsychological profile of adult patients with nonsymptomatic occipital lobe epilepsies[J]. J Neurol, 2013, 260(2): 445-453.
doi: 10.1007/s00415-012-6650-z pmid: 22903808 |
[28] |
Polat M, Gokben S, Tosun A, et al. Neurocognitive evaluation in children with occipital lobe epilepsy[J]. Seizure, 2012, 21(4): 241-244.
doi: 10.1016/j.seizure.2011.12.015 pmid: 22265577 |
[29] |
Chakraborty S, Lennon JC, Malkaram SA, et al. Serotonergic system, cognition, and BPSD in Alzheimer's disease[J]. Neurosci Lett, 2019, 704: 36-44.
doi: S0304-3940(19)30214-9 pmid: 30946928 |
[30] |
Cristofori I, Cohen-Zimerman S, Grafman J. Executive functions[J]. Handb Clin Neurol, 2019, 163: 197-219.
doi: B978-0-12-804281-6.00011-2 pmid: 31590731 |
[31] |
Zhao H, Lin Y, Chen S, et al. 5-HT3 Receptors: A potential therapeutic target for epilepsy[J]. Curr Neuropharmacol, 2018, 16(1): 29-36.
doi: 10.2174/1570159X15666170508170412 pmid: 28486926 |
[32] |
Chaumont-Dubel S, Dupuy V, Bockaert J, et al. The 5-HT6 receptor interactome: New insight in receptor signaling and its impact on brain physiology and pathologies[J]. Neuropharmacology, 2020, 172: 107839.
doi: 10.1016/j.neuropharm.2019.107839 URL |
[33] |
Liu C, Wen Y, Huang H, et al. Over-expression of 5-HT6 receptor and activated Jab-1/p-c-Jun play important roles in pilocarpine-induced seizures and learning-memory impairment[J]. J Mol Neurosci, 2019, 67(3): 388-399.
doi: 10.1007/s12031-018-1238-4 pmid: 30694481 |
[34] | Li J, Chen L, Guo F, et al. The effects of GABAergic system under cerebral ischemia: Spotlight on cognitive function[J]. Neural Plast, 2020, 2020: 8856722. |
[35] |
Abbas AI, Sundiang MJM, Henoch B, et al. Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding[J]. Neuron, 2018, 100(4): 926-939 e3.
doi: S0896-6273(18)30831-6 pmid: 30318409 |
[36] |
Prevot T, Sibille E. Altered GABA-mediated information processing and cognitive dysfunctions in depression and other brain disorders[J]. Mol Psychiatry, 2021, 26(1): 151-167.
doi: 10.1038/s41380-020-0727-3 URL |
[37] |
Wilcox JM, Consoli DC, Tienda AA, et al. Altered synaptic glutamate homeostasis contributes to cognitive decline in young APP/PSEN1 mice[J]. Neurobiol Dis, 2021, 158: 105486.
doi: 10.1016/j.nbd.2021.105486 URL |
[38] |
Akyuz E, Polat AK, Eroglu E, et al. Revisiting the role of neurotransmitters in epilepsy: An updated review[J]. Life Sci, 2021, 265: 118826.
doi: 10.1016/j.lfs.2020.118826 URL |
[39] |
Noebels JL. Single-gene determinants of epilepsy comorbidity[J]. Cold Spring Harb Perspect Med, 2015, 5(11): a022756.
doi: 10.1101/cshperspect.a022756 URL |
[40] |
Nicastro N, Assal F, Seeck M. From here to epilepsy: the risk of seizure in patients with Alzheimer's disease[J]. Epileptic Disord, 2016, 18(1): 1-12.
doi: 10.1684/epd.2016.0808 pmid: 26907471 |
[41] |
Niazi R, Fanning EA, Depienne C, et al. A mutation update for the PCDH19 gene causing early-onset epilepsy in females with an unusual expression pattern[J]. Hum Mutat, 2019, 40(3): 243-257.
doi: 10.1002/humu.23701 pmid: 30582250 |
[42] |
Chemaly N, Losito E, Pinard JM, et al. Early and long-term electroclinical features of patients with epilepsy and PCDH19 mutation[J]. Epileptic Disord, 2018, 20(6): 457-467.
doi: 10.1684/epd.2018.1009 pmid: 30530412 |
[43] |
Doherty C, Kinzy TG, Ferguson L, et al. The role of genetic polymorphisms in executive functioning performance in temporal lobe epilepsy[J]. Epilepsy Behav, 2021, 121(Pt A): 108088.
doi: 10.1016/j.yebeh.2021.108088 URL |
[44] |
Warburton A, Miyajima F, Shazadi K, et al. NRSF and BDNF polymorphisms as biomarkers of cognitive dysfunction in adults with newly diagnosed epilepsy[J]. Epilepsy Behav, 2016, 54: 117-27.
doi: 10.1016/j.yebeh.2015.11.013 pmid: 26708060 |
[45] |
Kingswood JC, D'augeres GB, Belousova E, et al. TuberOus SClerosis registry to increase disease Awareness(TOSCA)-baseline data on 2093 patients[J]. Orphanet J Rare Dis, 2017, 12(1): 1-13.
doi: 10.1186/s13023-016-0551-7 URL |
[46] | Ma J, Shi M, Zhang X, et al. GLP1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF-kappaB signaling pathways in streptozotocin-induced diabetic rats[J]. Int J Mol Med, 2018, 41(5): 2977-2985. |
[47] |
Mu RZ, Liu S, Liang KG, et al. A Meta-analysis of neuron-specific enolase levels in cerebrospinal fluid and serum in children with epilepsy[J]. Front Mol Neurosci, 2020, 13: 24.
doi: 10.3389/fnmol.2020.00024 URL |
[48] |
Hanin A, Denis JA, Frazzini V, et al. Neuron specific enolase, S100-beta protein and progranulin as diagnostic biomarkers of status epilepticus[J]. J Neurol, 2022, 269(7): 3752-3760.
doi: 10.1007/s00415-022-11004-2 pmid: 35190890 |
[49] |
Tan Z, Jiang J, Tian F, et al. Serum visinin-like protein 1 is a better biomarker than neuron-specific enolase for seizure-induced neuronal injury: A prospective and observational study[J]. Front Neurol, 2020, 11: 567587.
doi: 10.3389/fneur.2020.567587 URL |
[50] |
Galland F, Negri E, Da Re C, et al. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus[J]. Neurotoxicology, 2017, 62: 46-55.
doi: S0161-813X(17)30077-3 pmid: 28506823 |
[51] |
Arend J, Kegler A, Caprara ALF, et al. Depressive, inflammatory, and metabolic factors associated with cognitive impairment in patients with epilepsy[J]. Epilepsy Behav, 2018, 86: 49-57.
doi: S1525-5050(18)30195-1 pmid: 30077908 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||