Clinical Focus ›› 2023, Vol. 38 ›› Issue (7): 659-662.doi: 10.3969/j.issn.1004-583X.2023.07.013
Previous Articles Next Articles
Received:
2023-01-08
Online:
2023-07-20
Published:
2023-09-01
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.07.013
[1] | World Health Organization. Global tuberculosis report 2019[R]. Geneva: WHO: 2019. |
[2] |
Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis[J]. Indian J Tuberc, 2020, 67(3):295-311.
doi: S0019-5707(20)30030-5 pmid: 32825856 |
[3] | 米洁, 薛勇, 白雪娟, 等. 淋巴细胞亚群检测在结核病诊疗中的应用进展[J]. 中国防痨杂志, 2021, 43(2):178-185. |
[4] |
Nakajima M, Matsuyama M, Kawaguchi M, et al. Depletion of PD-1 or PD-L1 did not affect the mortality of mice infected with Mycobacterium avium[J]. Sci Rep, 2021, 11(1):18008.
doi: 10.1038/s41598-021-97391-4 pmid: 34504192 |
[5] | Sia JK, Rengarajan J. Immunology of mycobacterium tuberculosis infections[J]. Microbiol Spectr, 2019, 7(4):10. |
[6] |
Marasco M, Berteotti A, Weyershaeuser J, et al. Molecular mechanism of SHP2 activation by PD-1 stimulation[J]. Sci Adv, 2020, 6(5):eaay4458.
doi: 10.1126/sciadv.aay4458 URL |
[7] |
Shen L, Gao Y, Liu Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4+ T-cell functions and phagocytosis of macrophages in active tuberculosis[J]. Sci Rep, 2016, 6:38362.
doi: 10.1038/srep38362 pmid: 27924827 |
[8] |
Day CL, Abrahams DA, Bunjun R, et al. PD-1 Expression on mycobacterium tuberculosis-specific CD4 T cells is associated with bacterial load in human tuberculosis[J]. Front Immunol, 2018, 9:1995.
doi: 10.3389/fimmu.2018.01995 URL |
[9] |
Liu X, Li F, Niu H, et al. IL-2 restores T-cell dysfunction induced by persistent mycobacterium tuberculosis antigen stimulation[J]. Front Immunol, 2019, 10:2350.
doi: 10.3389/fimmu.2019.02350 URL |
[10] |
Shen L, Shi H, Gao Y, et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis[J]. Tuberculosis (Edinb), 2016, 101:146-150.
doi: 10.1016/j.tube.2016.10.001 URL |
[11] | Yang C, Dai F, Pulati R, et al. Clinical significance of negative costimulatory molecule PD-1/PD-L1 on peripheral blood regulatory T cell levels among patients with pulmonary tuberculosis[J]. J Trop Med, 2022, 2022:7526501. |
[12] |
Haddadi MH, Negahdari B. Clinical and diagnostic potential of regulatory T cell markers: From bench to bedside[J]. Transpl Immunol, 2022, 70:101518.
doi: 10.1016/j.trim.2021.101518 URL |
[13] |
Khalili A, Ebrahimpour S, Maleki I, et al. CD4+CD25+CD127low Foxp3+ regulatory T cells in Crohn's disease[J]. Rom J Intern Med, 2018, 56(3):158-166.
doi: 10.2478/rjim-2018-0006 pmid: 29453928 |
[14] |
Grover P, Goel PN, Greene MI. Regulatory T cells: Regulation of identity and function[J]. Front Immunol, 2021, 12:750542.
doi: 10.3389/fimmu.2021.750542 URL |
[15] |
Suarez GV, Melucci Ganzarain CDC, Vecchione MB, et al. PD-1/PD-L1 pathway modulates macrophage susceptibility to mycobacterium tuberculosis specific CD8+ T cell induced death[J]. Sci Rep, 2019, 9(1):187.
doi: 10.1038/s41598-018-36403-2 |
[16] |
Li J, Jin C, Wu C, et al. PD-1 modulating mycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy[J]. J Leukoc Biol, 2019, 106(3):733-747.
doi: 10.1002/JLB.MA1118-450RR URL |
[17] | Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2018, 18(2):91104. |
[18] |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355.
doi: 10.1126/science.aar4060 pmid: 29567705 |
[19] |
Singh A, Mohan A, Dey AB, et al. Programmed death-1+ T cells inhibit effector T cells at the pathological site of miliary tuberculosis[J]. Clin Exp Immunol, 2017, 187(2):269-283.
doi: 10.1111/cei.12871 pmid: 27665733 |
[20] |
Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates mycobacterium tuberculosis infection in rhesus macaques[J]. Sci Immunol, 2021, 6(55):eabf3861.
doi: 10.1126/sciimmunol.abf3861 URL |
[21] |
Liu Q, Ou Q, Shen L, et al. BATF potentially mediates negative regulation of PD-1/PD-Ls pathway on T Cell functions in mycobacterium tuberculosis Infection[J]. Front Immunol, 2019, 10:2430.
doi: 10.3389/fimmu.2019.02430 URL |
[22] |
Tousif S, Singh Y, Prasad DV, et al. T cells from programmed death-1 deficient mice respond poorly to mycobacterium tuberculosis infection[J]. PLoS One, 2011, 6(5):e19864.
doi: 10.1371/journal.pone.0019864 URL |
[23] |
Barber DL, Mayer-Barber KD, Feng CG, et al. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition[J]. J Immunol, 2011, 186(3):1598-1607.
doi: 10.4049/jimmunol.1003304 pmid: 21172867 |
[24] |
Sakai S, Kawamura I, Okazaki T, et al. PD-1-PD-L1 pathway impairs T(h)1 immune response in the late stage of infection with mycobacterium bovis bacillus calmette-guérin[J]. Int Immunol, 2010, 22(12):915-925.
doi: 10.1093/intimm/dxq446 pmid: 21047981 |
[25] |
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy[J]. Sci Transl Med, 2019, 11(475):eaat2702.
doi: 10.1126/scitranslmed.aat2702 URL |
[26] |
Kawahara JY, Irvine EB, Alter G. A case for antibodies as mechanistic correlates of immunity in tuberculosis[J]. Front Immunol, 2019, 10:996.
doi: 10.3389/fimmu.2019.00996 pmid: 31143177 |
[27] |
Casadevall A. Antibody-based vaccine strategies against intracellular pathogens[J]. Curr Opin Immunol, 2018, 53:74-80.
doi: S0952-7915(18)30018-9 pmid: 29704764 |
[28] |
Rijnink WF, Ottenhoff THM, Joosten SA. B-cells and antibodies as contributors to effector immune responses in tuberculosis[J]. Front Immunol, 2021, 12:640168.
doi: 10.3389/fimmu.2021.640168 URL |
[29] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis[J]. J Infect Dis, 2013, 208(4):603-615.
doi: 10.1093/infdis/jit206 pmid: 23661793 |
[30] | 胥萍. PD-1/PD-L1在肺结核患者外周血淋巴细胞表面的表达特性及其生物学意义[C]. 江苏省第十八次感染病学学术会议论文集, 2016:78-78. |
[31] |
Albayrak N, Dirix V, Aerts L, et al. Differential expression of maturation and activation markers on NK cells in patients with active and latent tuberculosis[J]. J Leukoc Biol, 2022, 111(5):1031-1042.
doi: 10.1002/JLB.4A1020-641RR URL |
[32] | Kathamuthu GR, Kumar NP, Moideen K, et al. High dimensionality reduction and immune phenotyping of natural killer and invariant natural killer cells in latent tuberculosis-diabetes comorbidity[J]. J Immunol Res, 2022, 2022:2422790. |
[33] |
Junqueira-Kipnis AP, Trentini MM, Marques Neto LM, et al. Live vaccines have different NK cells and neutrophils requirements for the development of a protective immune response against tuberculosis[J]. Front Immunol, 2020, 11:741.
doi: 10.3389/fimmu.2020.00741 pmid: 32391021 |
[34] |
Hassan SS, Akram M, King EC, et al. PD-1, PD-L1 and PD-L2 gene expression on T-cells and natural killer cells declines in conjunction with a reduction in PD-1 protein during the intensive phase of tuberculosis treatment[J]. PLoS One, 2015, 10(9):e0137646.
doi: 10.1371/journal.pone.0137646 URL |
[35] |
Alvarez IB, Pasquinelli V, Jurado JO, et al. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against mycobacterium tuberculosis[J]. J Infect Dis, 2010, 202(4):524-532.
doi: 10.1086/654932 pmid: 20617899 |
[1] | Liu Lei, Li Mingwu, Wan Rong. Diagnostic value of laboratory indexes in patients with pulmonary tuberculosis complicated by pulmonary embolism [J]. Clinical Focus, 2024, 39(2): 134-139. |
[2] | Liu Ye, Ruan Guiren, Liu Xiaoqing, Shi Xiaochun, Fei Guijun. Diagnosis and differential diagnosis of pancreatic tuberculosis [J]. Clinical Focus, 2023, 38(10): 898-903. |
[3] | . [J]. Clinical Focus, 2023, 38(8): 737-742. |
[4] | Wolazihan Madeniyati, Dilixiati Tuerdimaimaiti, Li Mengchen, Baihetinisha Tuerdi. Meta-analysis of the application value of metagenomic next-generation sequencing technology in the diagnosis of pulmonary tuberculosis [J]. Clinical Focus, 2023, 38(5): 389-398. |
[5] | Luo Weigang, Yin Yuanyuan, Ren Huiling. Analysis and treatment of primary spinal infection [J]. Clinical Focus, 2022, 37(6): 525-529. |
[6] | Xu Jingran, Li Feifei, Xie Chengxin, Gong Hui, Luan Qiyun, Li Li. Application of endobronchial ultrasound transbronchial lung biopsy with guide sheath and rapid on-site evaluation in the diagnosis of bacteriologically-negative pulmonary tuberculosis [J]. Clinical Focus, 2022, 37(3): 220-224. |
[7] | . [J]. Clinical Focus, 2022, 37(2): 166-169. |
[8] | Li Baiyuan, Li Yuanjun, Li Lingxia. Study of mobile phone dependence and sleep disorder in patients with pulmonary tuberculosis [J]. Clinical Focus, 2021, 36(8): 719-723. |
[9] | Li Chaojun, Sun Chenghong, Jin Wenyu. Comparation of CT imaging characteristics between non-tuberculous mycobacterium tuberculosis and multi-drug resistant tuberculosis [J]. Clinical Focus, 2021, 36(6): 530-534. |
[10] | Lu Haoyang, Lu Jiazhong, Han Mingfeng, Lvh Xincai, Zhang Biao, Rong Chengzhen, Jia Leilei, Pan Qiangqiang, Ma Leilei, Zhao Ren. Observations on clinical treatment of COVID-19 complicated with cardiovascular disease [J]. Clinical Focus, 2021, 36(3): 203-207. |
[11] | . [J]. Clinical Focus, 2015, 30(12): 1427-1428. |
[12] | . @@ [J]. Clinical Focus, 2015, 30(10): 1173-1175. |
[13] | Lu Qingyun;Chen Wufei. Feasibility analysis of ultra low dose CT in follow-up physical examination population with solid pulmonary nodules [J]. Clinical Focus, 2015, 30(6): 637-640. |
[14] | . [J]. Clinical Focus, 2015, 30(3): 319-321. |
[15] | . [J]. Clinical Focus, 2015, 30(2): 214-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||