Clinical Focus ›› 2023, Vol. 38 ›› Issue (10): 949-953.doi: 10.3969/j.issn.1004-583X.2023.10.017
Previous Articles Next Articles
Received:
2023-04-10
Online:
2023-10-20
Published:
2024-01-03
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.10.017
[1] | Griffin P. Rodgers. United States Renal Data System. 2022 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2022[DB/OL]. https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/3-clinical-indicators-and-preventive-care.html, 2023-03-10. |
[2] |
Miyata T, Ueda Y, Horie K, et al. Renal catabolism of advanced glycation end products: The fate of pentosidine[J]. Kidney Int, 1998, 53(2):416-422.
pmid: 9461101 |
[3] |
Uribarri J, Del Castillo MD, De La Maza MP, et al. Dietary advanced glycation end products and their role in health and disease[J]. Adv Nutr, 2015, 6(4): 461-473.
doi: 10.3945/an.115.008433 pmid: 26178030 |
[4] |
Pageon H, Zucchi H, Rousset F, et al. Glycation stimulates cutaneous monocyte differentiation in reconstructed skin in vitro[J]. Mech Ageing Dev, 2017, 162: 18-26.
doi: S0047-6374(16)30135-X pmid: 28163107 |
[5] | Odetti P, Cosso L, Pronzato MA, et al. Plasma advanced glycosylation end-products in maintenance haemodialysis patients[J]. Nephrol Dial Transplant, 1995, 10(11):2110-2113. |
[6] | 于敏, 王姣, 史耀勋, 等. 慢性肾衰竭微炎症状态发生机制的研究进展[J]. 中华医院感染学杂志, 2010, 20(10):1498-1500. |
[7] |
Xu G, Luo K, Liu H, et al. The progress of inflammation and oxidative stress in patients with chronic kidney disease[J]. Ren Fail, 2015, 37(1): 45-49.
doi: 10.3109/0886022X.2014.964141 pmid: 25375354 |
[8] |
Syed-Ahmed M, Narayanan M. Immune dysfunction and risk of infection in chronic kidney disease[J]. Adv Chronic Kidney Dis, 2019, 26(1): 8-15.
doi: 10.1053/j.ackd.2019.01.004 URL |
[9] |
Ekdahl KN, Soveri I, Hilborn J, et al. Cardiovascular disease in haemodialysis: Role of the intravascular innate immune system[J]. Nat Rev Nephrol, 2017, 13(5): 285-296.
doi: 10.1038/nrneph.2017.17 pmid: 28239169 |
[10] |
Bossola M, Sanguinetti M, Scribano D, et al. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients[J]. Clin J Am Soc Nephrol, 2009, 4(2): 379-385.
doi: 10.2215/CJN.03490708 URL |
[11] |
Wang F, Zhang P, Jiang H, et al. Gut bacterial translocation contributes to microinflammation in experimental uremia[J]. Dig Dis Sci, 2012, 57(11): 2856-2862.
doi: 10.1007/s10620-012-2242-0 URL |
[12] |
Fraenkel PG. Anemia of inflammation: A review[J]. Med Clin North Am, 2017, 101(2): 285-296.
doi: 10.1016/j.mcna.2016.09.005 URL |
[13] |
Steinbicker AU, Sachidanandan C, Vonner AJ, et al. Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation[J]. Blood, 2011, 117(18): 4915-4923.
doi: 10.1182/blood-2010-10-313064 pmid: 21393479 |
[14] | Yan Z, Xu G. A novel choice to correct inflammation-induced anemia in CKD:oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat[J]. Front Med (Lausanne), 2020, 6(7): 393. |
[15] | Ganz T, Longo DL. Anemia of Inflammation[J]. NewEngla nd Journal of Medicine, 2019, 381(12): 1148-1157. |
[16] |
De Oliveira, Junior WV, Sabino AP, et al. Inflammation and poor response to treatment with erythropoietin in chronic kidney disease[J]. J Bras Nefrol, 2015, 37(2): 255-263.
doi: 10.5935/0101-2800.20150039 pmid: 26154647 |
[17] |
Souma T, Yamazaki S, Moriguchi T, et al. Plasticity of renal erythropoietin-producing cells governs fibrosis[J]. J Am Soc Nephrol, 2013, 24(10):1599-1616.
doi: 10.1681/ASN.2013010030 pmid: 23833259 |
[18] | Fujii J, Homma T, Kobayashi S, et al. Erythrocytes as a preferential target of oxidative stress in blood[J]. Free Radic Res, 2021, 55(5): 562-580. |
[19] |
Hsu SP, Chiang CK, Yang SY, et al. Nacetylcysteine for the management of anemia and oxidative stress in hemodialysis patients[J]. Nephron Clinical Practice, 2010, 116(3): c207-c216.
doi: 10.1159/000317201 URL |
[20] |
Shepshelovich D, Rozen-Zvi B, Avni T, et al. Intravenous Versus Oral Iron Supplementation for the Treatment of Anemia in CKD: An Updated Systematic Review and Meta-analysis[J]. Am J Kidney Dis, 2016, 68(5): 677-690.
doi: S0272-6386(16)30125-1 pmid: 27321965 |
[21] |
Drueke T, Witko-Sarsat V, Massy Z, et al. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease[J]. Circulation, 2002, 106(17): 2212-2217.
doi: 10.1161/01.cir.0000035250.66458.67 pmid: 12390950 |
[22] |
Stefanova D, Raychev A, Arezes J, et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron[J]. Blood, 2017, 130(3): 245-257.
doi: 10.1182/blood-2017-03-772715 pmid: 28465342 |
[23] | Shah AA, Donovan K, Seeley C, et al. Risk of infection associated with administration of intravenous iron[J]. JAMA, 2021, 4(11):e2133935. |
[24] |
Li X, Cole SR, Kshirsagar AV, et al. Safety of Dynamic Intravenous Iron Administration Strategies in Hemodialysis Patients[J]. Clinical Journal of the American Society of Nephrology, 2019, 14(5): 728-737.
doi: 10.2215/CJN.03970318 pmid: 30988164 |
[25] | 汤莹, 杜光, 孙秋雁. 缺铁性贫血临床药物治疗进展[J]. 中国医院药学杂志, 2022, 23:2560-2566. |
[26] |
Pergola PE, Kopyt NP. Oral ferric maltol for the treatment of iron-deficiency anemia in patients with CKD: A randomized trial and open-label extension[J]. Am J Kidney Dis, 2021, 78(6): 846-856.
doi: 10.1053/j.ajkd.2021.03.020 pmid: 34029682 |
[27] |
Kaplan JM, Sharma N, Dikdan S. Hypoxia-inducible factor and its role in the management of anemia in chronic kidney disease[J]. Int J Mol Sci, 2018, 19(2):389.
doi: 10.3390/ijms19020389 URL |
[28] |
Chen N, Hao C, Liu BC, et al. Roxadustat treatment for anemia in patients undergoing long-term dialysis[J]. N Engl J Med, 2019, 381(11): 1011-1022.
doi: 10.1056/NEJMoa1901713 URL |
[29] |
Chen N, Hao C, Peng X, et al. Roxadustat for Anemia in patients with kidney disease not receiving dialysis[J]. N Engl J Med, 2019, 381(11): 1001-1010.
doi: 10.1056/NEJMoa1813599 URL |
[30] |
Besarab A, Provenzano R, Hertel J, et al. Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients[J]. Nephrol Dial Transplant, 2015, 30(10): 1665-1673.
doi: 10.1093/ndt/gfv302 URL |
[31] | 周任, 陈亚婷, 张永. 罗沙司他治疗血液透析肾性贫血患者有效性和安全性的Meta分析[J]. 临床荟萃, 2022, 37(4):305-310. |
[32] |
Su X, Xie Y, Zhang J, et al. HIF-α activation by the prolyl hydroxylase inhibitor roxadustat suppresses chemoresistant glioblastoma growth by inducing ferroptosis[J]. Cell Death Dis, 2022, 13(10):861.
doi: 10.1038/s41419-022-05304-8 pmid: 36209275 |
[33] |
D'arrigo G, Baggetta R, Tripepi G, et al. Effects of vitamin e-coated versus conventional membranes in chronic hemodialysis patients: A systematic review and meta-analysis[J]. Blood Purif, 2017, 43(1-3): 101-122.
doi: 10.1159/000453444 URL |
[34] |
Susantitaphong P, Riella C, Jaber BL. Effect of ultrapure dialysate on markers of inflammation, oxidative stress, nutrition and anemia parameters: A meta-analysis[J]. Nephrol Dial Transplant, 2013, 28(2): 438-446.
doi: 10.1093/ndt/gfs514 URL |
[35] |
Zhang Y, Mei CL, Rong S, et al. Effect of the combination of hemodialysis and hemoperfusion on clearing advanced glycation end products: A prospective, randomized, two-stage crossover trial in patients under maintenance hemodialysis[J]. Blood Purif, 2015, 40(2): 127-132.
doi: 10.1159/000376604 URL |
[36] |
Macdougall IC, Bhandari S, White C, et al. Intravenous iron dosing and infection risk in patients on hemodialysis: A prespecified secondary analysis of the PIVOTAL trial[J]. J Am Soc Nephrol, 2020, 31(5): 1118-1127.
doi: 10.1681/ASN.2019090972 pmid: 32253271 |
[37] |
Hasegawa T, Zhao J, Fuller DS, et al. Erythropoietin hyporesponsiveness in dialysis patients: Possible role of statins[J]. Am J Nephrol, 2017, 46(1): 11-17.
doi: 10.1159/000477217 pmid: 28564644 |
[38] | Zhu Y, Tang Y, He H, et al. Gut Microbiota correlates with clinical responsiveness to erythropoietin in hemodialysis patients with anemia[J]. Front Cell Infect Microbiol, 2022, 22(12): 919352. |
[39] |
Sagar P, Angmo S, Sandhir R, et al. Effect of hepcidin antagonists on anemia during inflammatory disorders[J]. Pharmacol Ther, 2021, 226: 107877.
doi: 10.1016/j.pharmthera.2021.107877 URL |
[40] |
Schwoebel F, Van Eijk LT, Zboralski D, et al. The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys[J]. Blood, 2013, 121(12): 2311-2315.
doi: 10.1182/blood-2012-09-456756 pmid: 23349391 |
[41] |
Van Eijk LT, John AS, Schwoebel F, et al. Effect of the antihepcidin spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans[J]. Blood, 2014, 124(17): 2643-2646.
doi: 10.1182/blood-2014-03-559484 pmid: 25163699 |
[42] |
Renders L, Budde K, Rosenberger C, et al. First-in-human phase i studies of prs-080#22, a hepcidin antagonist, in healthy volunteers and patients with chronic kidney disease undergoing hemodialysis[J]. PLoS One, 2019, 14(3): e0212023.
doi: 10.1371/journal.pone.0212023 URL |
[1] | Gu Cuihong, Wang Yang, Lin Li, Wang Lihong, Zhang Zhihua. Anti-thymocyte globulin combined with cyclosporine A in the treatment of severe aplastic anemia-induced caplillary leak syndrome in children: A case report [J]. Clinical Focus, 2023, 38(9): 819-322. |
[2] | Zhu Weijian, He Ying, Huang Mufang, Fu Shezhu, Wang Xiaoqi, Li Zhixin, Chen Lijun, Li Xiaoliang. Change of miR-223-3p level in peripheral blood of β-thalassemia treated with thalidomide and corresponding clinical value [J]. Clinical Focus, 2022, 37(6): 515-518. |
[3] | Wen Xue, Zhang Zhihua, Zhang Rongjuan, Hao Changlai. Hereditary spherocytosis caused by SPTB gene hybrid mutation: a case report [J]. Clinical Focus, 2021, 36(11): 1019-1023. |
[4] | . [J]. Clinical Focus, 2016, 31(3): 336-336. |
[5] | . [J]. Clinical Focus, 2015, 30(11): 1309-1312. |
[6] | Yang Wenrui;Zhang Fengkui. Diagnosis and treatment of acquired aplastic anemia [J]. Clinical Focus, 2015, 30(10): 1081-1086. |
[7] | Li Yingmei;Sun Hui. Current status of diagnosis and treatment of autoimmune hemolytic anemia [J]. Clinical Focus, 2015, 30(10): 1087-1091. |
[8] | . @@ [J]. Clinical Focus, 2015, 30(10): 1178-1180. |
[9] | Shi Xiuzhen;Wang Huiping;Pan Ying;Wang Zhitao;Zhang Jiakui;Zhai Zhimin. Comparison of CD4 + CD25 + Treg cell and T-cell subgroups in evaluating immune status in patients with aplastic anemia [J]. Clinical Focus, 2015, 30(6): 628-632. |
[10] | WANG Lu;HAN Bing. Recent progresses in the treatment of aplastic anemia [J]. Clinical Focus, 2014, 29(10): 1083-1086. |
[11] | WU Yu;XU Juan. Advances in the treatment of hemolytic anemia [J]. Clinical Focus, 2014, 29(10): 1087-1.09011e+007. |
[12] | . @@ [J]. Clinical Focus, 2014, 29(10): 1191-1194. |
[13] | . [J]. Clinical Focus, 2014, 29(8): 922-924. |
[14] | . [J]. Clinical Focus, 2014, 29(8): 926-927. |
[15] | . [J]. Clinical Focus, 2014, 29(5): 565-566. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||