Clinical Focus ›› 2023, Vol. 38 ›› Issue (11): 1053-1056.doi: 10.3969/j.issn.1004-583X.2023.11.018
Received:
2023-04-11
Online:
2023-11-20
Published:
2024-01-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.11.018
[1] |
Hausmann D, Hoffmann DC, Venkataramani V, et al. Autonomous rhythmic activity in glioma networks drives brain tumour growth[J]. Nature, 2023, 613(7942):179-186.
doi: 10.1038/s41586-022-05520-4 |
[2] | 孙贤婷, 廖伟华, 曹冬, 等. 基于影像组学的logistic回归模型预测胶质瘤分级[J]. 中南大学学报:医学版, 2021, 46(4):385-392. |
[3] |
Zhao L, Xu DG, Hu YH. The regulation of microglial cell polarization in the tumor microenvironment: A new potential strategy for auxiliary treatment of glioma-a review[J]. Cell Mol Neurobiol, 2023, 43(1):193-204.
doi: 10.1007/s10571-022-01195-7 |
[4] | Rani V, Prabhu A. In vitro blood brain barrier models: Molecular aspects and therapeutic strategies in glioma management[J]. Curr Res Transl Med, 2023, 71(1):103376. |
[5] |
Xu X, Liang Y, Gareev I, et al. LncRNA as potential biomarker and therapeutic target in glioma[J]. Mol Biol Rep, 2023, 50(1):841-851.
doi: 10.1007/s11033-022-08056-y |
[6] |
Wang L, Yu Z, Sun S, et al. Long non-coding RNAs: Potential molecular biomarkers for gliomas diagnosis and prognosis[J]. Rev Neurosci, 2017, 28(4): 375-380.
doi: 10.1515/revneuro-2016-0066 URL |
[7] | 应勤健, 苗贤媛, 崔晓颖, 等. 巢蛋白与肿瘤发生发展[J]. 临床荟萃, 2021, 36(07): 659-663. |
[8] |
Ali T, Grote P. Beyond the RNA-dependent function of lncRNA genes[J]. Elife, 2020, 9: e60583.
doi: 10.7554/eLife.60583 URL |
[9] |
Núñez-Martínez HN, Recillas-Targa F. Emerging Functions of lncRNA Loci beyond the Transcript Itself[J]. Int J Mol Sci, 2022, 23(11):6258.
doi: 10.3390/ijms23116258 URL |
[10] | Wei C, Wang B, Peng D, et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas[J]. Front Immunol, 2022, 4(13):849592. |
[11] |
Dang Y, Wei X, Xue L, et al. Long non-coding RNA in glioma: Target miRNA and signaling pathways[J]. Clin Lab, 2018, 64(6):887-894.
doi: 10.7754/Clin.Lab.2018.180107 pmid: 29945317 |
[12] |
Shi J, Lv S, Wu M, et al. HOTAIR-EZH2 inhibitor AC1Q3QWB upregulates CWF19L1 and enhances cell cycle inhibition of CDK4/6 inhibitor palbociclib in glioma[J]. Clin Transl Med, 2020, 10(1): 182-198.
doi: 10.1002/ctm2.21 pmid: 32508030 |
[13] |
Ke J, Yao YL, Zheng J, et al. Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326[J]. Oncotarget, 2015, 6(26): 21934-21949.
pmid: 26183397 |
[14] |
Zhou X, Ren Y, Zhang J, et al. HOTAIR is a therapeutic target in glioblastoma[J]. Oncotarget, 2015, 6(10): 8353-8365.
doi: 10.18632/oncotarget.3229 pmid: 25823657 |
[15] | Cao P, Li F, Xiao Y, et al. Identification and validation of 7-lncRNA signature of epigenetic disorders by comprehensive epigenetic analysis[J]. Dis Markers,2022, 21(2022):5118444. |
[16] | 呙文静, 邓慧, 宋萍, 等. 基于TCGA数据库确定低级别胶质瘤免疫相关lncRNA并构建预后模型[J]. 华中科技大学学报:医学版, 2022, 51(2):167-171. |
[17] | 王一, 李学民, 柳琛. 长链非编码RNA在神经胶质瘤中作用的研究进展[J]. 基础医学与临床, 2016, 36(3):411-414. |
[18] |
Yao Y, Ma J, Xue Y, et al. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152[J]. Cancer Lett, 2015, 359(1): 75-86.
doi: 10.1016/j.canlet.2014.12.051 pmid: 25578780 |
[19] |
Wang Q, Zhang J, Liu Y, et al. A novel cell cycle-associated lncRNA, HOXA11-AS, is transcribed from the 5-prime end of the HOXA transcript and is a biomarker of progression in glioma[J]. Cancer Lett, 2016, 373(2):251-259.
doi: 10.1016/j.canlet.2016.01.039 pmid: 26828136 |
[20] |
Wang P, Liu YH, Yao YL, et al. Long non-coding RNA CASC2 suppresses malignancy in human gliomas by miR-21[J]. Cell Signal, 2015, 27(2):275-282.
doi: 10.1016/j.cellsig.2014.11.011 pmid: 25446261 |
[21] |
Guo H, Wu L, Yang Q, et al. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma[J]. Gene, 2015, 554(1):114-119.
doi: 10.1016/j.gene.2014.10.038 pmid: 25445282 |
[22] |
Anbiyaiee A, Ramazii M, Bajestani SS, et al. The function of lncRNA-ATB in cancer[J]. Clin Transl Oncol, 2023, 25(1):1-9.
doi: 10.1007/s12094-022-02848-1 |
[23] |
Zhao X, Wang P, Liu J, et al. Gas5 exerts tumor-suppressive functions in human glioma cells by targeting miR-222[J]. Mol Ther, 2015, 23(12):1899-1911.
doi: 10.1038/mt.2015.170 pmid: 26370254 |
[24] |
Xia P, Li Q, Wu G, et al. An Immune-related lncRNA signature to predict survival in glioma patients[J]. Cell Mol Neurobiol, 2021, 41(2):365-375.
doi: 10.1007/s10571-020-00857-8 |
[25] | 宋操, 杨斌, 杨福伟, 等. 长链非编码RNA NEAT1靶向微小RNA-149-5p调控蛋白激酶B/雷帕霉素靶蛋白信号通路促进脑胶质瘤细胞增殖和转移的研究[J]. 中华实验外科杂志, 2022, 39(7):1301-1305. |
[26] | 杨世峰, 王磊, 马骁, 等. 长链非编码RNA母系表达基因3通过Wnt/β-连环蛋白信号通路对胶质瘤细胞的增殖和侵袭能力影响[J]. 中华实验外科杂志, 2020, 37(1): 67-70. |
[27] | 马飞, 李令兴, 李琳, 等. 长链非编码RNA RMRP通过JAK2/STAT3信号通路增强胶质瘤细胞对替莫唑胺敏感性的机制研究[J]. 中国临床药理学杂志, 2018, 34(19): 2320-2323. |
[28] | 于江龙, 阿不都拉·艾沙, 杨岩, 等. lncRNA-MALAT1基于p-PI3K/p-AKT通路对脑胶质瘤细胞增殖、凋亡、侵袭的影响[J]. 实用癌症杂志, 2022, 37(5): 697-701. |
[29] |
Caporali A, Emanueli C. Unraveling the epitranscriptome of small non-coding RNAs in vascular cells[J]. Mol Ther Nucleic Acids, 2022, 17(30): 477-478.
doi: 10.1016/j.omtn.2019.06.017 URL |
[30] | Belykh E, Shaffer KV, Lin C, et al. Blood-brain barrier, blood-brain tumor barrier, and fluorescence-guided neurosurgical oncology: Delivering optical labels to brain tumors[J]. Front Oncol, 2020, 5(10):739. |
[31] | 耿荣鑫, 徐阳, 刘宝辉, 等. 长链非编码RNA 牛磺酸上调基因1在胶质瘤中作用的研究进展[J]. 中华老年多器官疾病杂志, 2020, 19(6): 466-469. |
[32] |
Qin LJ, Gu YT, Zhang H, et al. Bradykinin-induced blood-tumor barrier opening is mediated by tumor necrosis factor-alpha[J]. Neurosci Lett, 2009, 450(2):172-175.
doi: 10.1016/j.neulet.2008.10.080 URL |
[33] |
Ma J, Wang P, Yao Y, et al. Knockdown of long non-coding RNA MALAT1 increases the blood-tumor barrier permeability by up-regulating miR-140[J]. Biochim Biophys Acta, 2016, 1859(2): 324-338.
doi: 10.1016/j.bbagrm.2015.11.008 pmid: 26619802 |
[34] |
Cai H, Xue Y, Wang P, et al. The long noncoding RNA TUG1 regulates blood-tumor barrier permeability by targeting miR-144[J]. Oncotarget, 2015, 6(23): 19759-19779.
doi: 10.18632/oncotarget.4331 pmid: 26078353 |
[35] |
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3):212-226.
doi: S0962-8924(18)30201-0 pmid: 30594349 |
[36] |
Yang J, Antin P, Berx G, et al. Guidelines and definitions for research on epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 341-352.
doi: 10.1038/s41580-020-0237-9 |
[37] |
Saitoh M. Involvement of partial EMT in cancer progression[J]. J Biochem, 2018, 164(4): 257-264.
doi: 10.1093/jb/mvy047 pmid: 29726955 |
[38] |
Liu H, Zhang X, Li J, et al. The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells[J]. J Cancer Res Clin Oncol, 2015, 141(2): 189-201.
doi: 10.1007/s00432-014-1752-x pmid: 24965746 |
[39] |
Yang A, Wang H, Yang X. Long non-coding RNA PVT1 indicates a poor prognosis of glioma and promotes cell proliferation and invasion via target EZH2[J]. Biosci Rep, 2017, 37(6): BSR20170871.
doi: 10.1042/BSR20170871 URL |
[40] | 万昕, 胡月, 章菊, 等. HHV-6A感染对神经胶质瘤细胞LncRNA MEG3表达及增殖凋亡侵袭转化的影响[J]. 癌变·畸变·突变, 2019, 31(5): 352-358. |
[41] |
Wang Y, Shi J, Chai K, et al. The role of snail in emt and tumorigenesis[J]. Curr Cancer Drug Targets, 2013, 13(9): 963-972.
doi: 10.2174/15680096113136660102 pmid: 24168186 |
[42] |
Zhang J, Cai H, Sun L, et al. LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the wnt/β-catenin pathway and predicts poor survival of glioma patients[J]. J Exp Clin Cancer Res, 2018, 37(1):225-243.
doi: 10.1186/s13046-018-0864-6 pmid: 30208924 |
[43] | Frederico SC, Zhang X, Hu B, et al. Pre-clinical models for evaluating glioma targeted immunotherapies[J]. Front Immunol, 2023, 9(13):1092399. |
[44] |
Zhang J, Stevens MF, Bradshaw TD. Temozolomide: mechanisms of action, repair and resistance[J]. Curr Mol Pharmacol, 2012, 5(1): 102-114.
doi: 10.2174/1874467211205010102 pmid: 22122467 |
[45] | McFaline-Figueroa JL, Braun CJ, Stanciu M, et al. Minor changes in expression of the mismatch repair protein msh2 exert a major impact on glioblastoma response to temozolomide[J]. Cancer Res, 2015, 75(15): 3127, 3138. |
[46] |
Tomar MS, Kumar A, Srivastava C, et al. Elucidating the mechanisms of temozolomide resistance in gliomas and the strategies to overcome the resistance[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2): 188616.
doi: 10.1016/j.bbcan.2021.188616 URL |
[47] |
Meng X, Zhao Y, Han B, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways[J]. Nat Commun, 2020, 11(1):594.
doi: 10.1038/s41467-019-14036-x pmid: 32001707 |
[48] |
Yao Y, Ma J, Xue Y, et al. Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152[J]. Cancer Lett, 2015, 359(1): 75-86.
doi: 10.1016/j.canlet.2014.12.051 pmid: 25578780 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||