Clinical Focus ›› 2023, Vol. 38 ›› Issue (11): 1048-1052.doi: 10.3969/j.issn.1004-583X.2023.11.017
Previous Articles Next Articles
Received:
2023-07-11
Online:
2023-11-20
Published:
2024-01-17
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.11.017
[1] |
Korn AR, Walsh-Bailey C, Correa-Mendez M, et al. Social determinants of health and US cancer screening interventions: A systematic review[J]. CA Cancer J Clin, 2023, 73(5):461-479.
doi: 10.3322/caac.v73.5 URL |
[2] |
Alsina M, Arrazubi V, Diez M, et al. Current developments in gastric cancer: from molecular profiling to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170.
doi: 10.1038/s41575-022-00703-w |
[3] |
Shitara K, Bang YJ, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer[J]. N Engl J Med, 2020, 382(25): 2419-2430.
doi: 10.1056/NEJMoa2004413 URL |
[4] |
Rodriquenz MG, Roviello G, D'Angelo A, et al. MSI and EBV positive gastric cancer's subgroups and their link with novel immunotherapy[J]. J Clin Med, 2020, 9(5):1427.
doi: 10.3390/jcm9051427 URL |
[5] |
Suh YS, Na D, Lee JS, et al. Comprehensive molecular characterization of adenocarcinoma of the gastroesophageal junction between esophageal and gastric adenocarcinomas[J]. Ann Surg, 2022, 275(4):706-717.
doi: 10.1097/SLA.0000000000004303 URL |
[6] |
Li S, Yu W, Xie F, et al. Neoadjuvant therapy with immune checkpoint blockade, antiangiogenesis, and chemotherapy for locally advanced gastric cancer[J]. Nat Commun, 2023, 14(1): 8.
doi: 10.1038/s41467-022-35431-x pmid: 36596787 |
[7] |
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: current therapeutics and emerging technologies[J]. Front Immunol, 2022, 13: 1059133.
doi: 10.3389/fimmu.2022.1059133 URL |
[8] |
Zheng X, Huang Y, Li K, et al. Immunosuppressive tumor microenvironment and immunotherapy of epstein-barr virus-associated malignancies[J]. Viruses, 2022, 14(5):1017.
doi: 10.3390/v14051017 URL |
[9] |
Zhou H, Jing S, Liu Y, et al. Identifying the key genes of Epstein-Barr virus-regulated tumour immune microenvironment of gastric carcinomas[J]. Cell Prolif, 2023, 56(3): e13373.
doi: 10.1111/cpr.v56.3 URL |
[10] |
Sun L, Meckes DG Jr. Methodological approaches to study extracellular vesicle mirnas in epstein-barr virus-associated cancers[J]. Int J Mol Sci, 2018, 19(9):2810.
doi: 10.3390/ijms19092810 URL |
[11] |
Cone AS, York SB, Meckes DG Jr. Extracellular vesicles in epstein-barr virus pathogenesis[J]. Curr Clin Microbiol Rep, 2019, 6(3): 121-31.
doi: 10.1007/s40588-019-00123-6 pmid: 32051811 |
[12] | Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response[J]. Signal Transduct Target Ther, 2022, 7(1): 331. |
[13] |
Jasinski-Bergner S, Mandelboim O, Seliger B. Molecular mechanisms of human herpes viruses inferring with host immune surveillance[J]. J Immunother Cancer, 2020, 8(2):e000841.
doi: 10.1136/jitc-2020-000841 URL |
[14] |
Damania B, Kenney SC, Raab-Traub N. Epstein-barr virus: Biology and clinical disease[J]. Cell, 2022, 185(20): 3652-3670.
doi: 10.1016/j.cell.2022.08.026 pmid: 36113467 |
[15] |
Biggi AFB, Elgui de Oliveira D. The epstein-barr virus hacks immune checkpoints: Evidence and consequences for lymphoproliferative disorders and cancers[J]. Biomolecules, 2022, 12(3):397.
doi: 10.3390/biom12030397 URL |
[16] |
Münz C. Immune checkpoints in T cells during oncogenic γ-herpesvirus infections[J]. J Med Virol, 2023, 95(1): e27840.
doi: 10.1002/jmv.v95.1 URL |
[17] |
Guo R, Gewurz BE. Epigenetic control of the epstein-barr lifecycle[J]. Curr Opin Virol, 2022, 52: 78-88.
doi: 10.1016/j.coviro.2021.11.013 URL |
[18] |
Fierti AO, Yakass MB, Okertchiri EA, et al. The role of epstein-barr virus in modulating key tumor suppressor genes in associated malignancies: epigenetics, transcriptional, and post-translational modifications[J]. Biomolecules, 2022, 12(1):127.
doi: 10.3390/biom12010127 URL |
[19] |
Guo R, Liang JH, Zhang Y, et al. Methionine metabolism controls the B cell EBV epigenome and viral latency[J]. Cell Metab, 2022, 34(9): 1280-1297,e9.
doi: 10.1016/j.cmet.2022.08.008 pmid: 36070681 |
[20] | Ka-Yue Chow L, Lai-Shun Chung D, Tao L, et al. Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma[J]. E Bio Medicine, 2022, 86: 104357. |
[21] |
Sugiura M, Imai S, Tokunaga M, et al. Transcriptional analysis of Epstein-Barr virus gene expression in EBV-positive gastric carcinoma: Unique viral latency in the tumour cells[J]. Br J Cancer, 1996, 74(4): 625-31.
doi: 10.1038/bjc.1996.412 |
[22] |
Stanland LJ, Luftig MA. The role of EBV-Induced hypermethylation in gastric cancer tumorigenesis[J]. Viruses, 2020, 12(11):1222.
doi: 10.3390/v12111222 URL |
[23] |
Wang Q, He H, Ji X, et al. BART-D2 subtype of EBV encoded BART miRNA cluster 1 region is strongly associated with endemic nasopharyngeal carcinoma[J]. J Med Virol, 2023, 95(3): e28667.
doi: 10.1002/jmv.v95.3 URL |
[24] | Pyo JS, Kim NY, Kang DW. Clinicopathological significance of EBV-infected gastric carcinomas: A meta-analysis[J]. Medicina (Kaunas), 2020, 56(7):345. |
[25] |
Cheng N, Li P, Cheng H, et al. Prognostic value of tumor-infiltrating lymphocytes and tertiary lymphoid structures in epstein-barr virus-associated and-negative gastric carcinoma[J]. Front Immunol, 2021, 12: 692859.
doi: 10.3389/fimmu.2021.692859 URL |
[26] |
Tanabe H, Mizukami Y, Takei H, et al. Clinicopathological characteristics of epstein-barr virus and microsatellite instability subtypes of early gastric neoplasms classified by the Japanese and the world health organization criteria[J]. J Pathol Clin Res, 2021, 7(4): 397-409.
doi: 10.1002/cjp2.v7.4 URL |
[27] |
Iizasa H, Kartika AV, Fekadu S, et al. Development of epstein-barr virus-associated gastric cancer: infection, inflammation, and oncogenesis[J]. World J Gastroenterol, 2022, 28(44): 6249-6257.
doi: 10.3748/wjg.v28.i44.6249 URL |
[28] |
Ignatova E, Seriak D, Fedyanin M, et al. Epstein-barr virus-associated gastric cancer: Disease that requires special approach[J]. Gastric Cancer, 2020, 23(6): 951-960.
doi: 10.1007/s10120-020-01095-z |
[29] |
De Re V, Caggiari L, De Zorzi M, et al. Epstein-barr virus BART microRNAs in EBV-associated hodgkin lymphoma and gastric cancer[J]. Infect Agent Cancer, 2020, 15: 42.
doi: 10.1186/s13027-020-00307-6 |
[30] |
Dai X, Gao Y, Wei W. Post-translational regulations of PD-L1 and PD-1: Mechanisms and opportunities for combined immunotherapy[J]. Semin Cancer Biol, 2022, 85: 246-252.
doi: 10.1016/j.semcancer.2021.04.002 URL |
[31] |
Chiang NJ, Hou YC, Tan KT, et al. The immune microenvironment features and response to immunotherapy in EBV-associated lymphoepithelioma-like cholangiocarcinoma[J]. Hepatol Int, 2022, 16(5): 1137-1149.
doi: 10.1007/s12072-022-10346-3 |
[32] |
Sasaki S, Nishikawa J, Sakai K, et al. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions[J]. Gastric Cancer, 2019, 22(3): 486-496.
doi: 10.1007/s10120-018-0880-4 pmid: 30264329 |
[33] |
Kondo A, Shinozaki-Ushiku A, Rokutan H, et al. Loss of viral genome with altered immune microenvironment during tumour progression of Epstein-Barr virus-associated gastric carcinoma[J]. J Pathol, 2023, 260(2): 124-136.
doi: 10.1002/path.v260.2 URL |
[34] |
Bai Y, Xie T, Wang Z, et al. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer[J]. J Immunother Cancer, 2022, 10(3):e004080.
doi: 10.1136/jitc-2021-004080 URL |
[35] |
Xie T, Liu Y, Zhang Z, et al. Positive status of epstein-barr virus as a biomarker for gastric cancer immunotherapy: A prospective observational study[J]. J Immunother, 2020, 43(4): 139-144.
doi: 10.1097/CJI.0000000000000316 pmid: 32134806 |
[36] |
Manfredi F, Cianciotti BC, Potenza A, et al. TCR redirected t cells for cancer treatment: Achievements, hurdles, and goals[J]. Front Immunol, 2020, 11: 1689.
doi: 10.3389/fimmu.2020.01689 pmid: 33013822 |
[37] |
Li W, Duan X, Chen X, et al. Immunotherapeutic approaches in EBV-associated nasopharyngeal carcinoma[J]. Front Immunol, 2023, 13: 1079515.
doi: 10.3389/fimmu.2022.1079515 URL |
[38] |
Cui X, Snapper CM. Epstein Barr Virus: Development of vaccines and immune cell therapy for EBV-associated diseases[J]. Front Immunol, 2021, 12: 734471.
doi: 10.3389/fimmu.2021.734471 URL |
[39] |
Nusbaum KB, Dulmage B, Choi JN, et al. Cutaneous manifestations of chimeric antigen receptor T-cell therapy: An introduction for dermatologists[J]. J Am Acad Dermatol, 2022, 87(3): 597-604.
doi: 10.1016/j.jaad.2021.07.017 URL |
[40] |
Slabik C, Kalbarczyk M, Danisch S, et al. CAR-T cells targeting epstein-barr virus gp350 validated in a humanized mouse model of EBV infection and lymphoproliferative disease[J]. Mol Ther Oncolytics, 2020, 18: 504-524.
doi: 10.1016/j.omto.2020.08.005 URL |
[41] |
Zhang X, Wang T, Zhu X, et al. GMP development and preclinical validation of CAR-T cells targeting a lytic EBV antigen for therapy of EBV-associated malignancies[J]. Front Immunol, 2023, 14:1103695.
doi: 10.3389/fimmu.2023.1103695 URL |
[42] |
Jia X, Guo T, Li Z, et al. Clinicopathological and Immunomicroenvironment Characteristics of Epstein-Barr Virus-Associated Gastric Cancer in a Chinese population[J]. Front Oncol, 2020, 10: 586752.
doi: 10.3389/fonc.2020.586752 URL |
[43] |
Cao B, Liu M, Huang J, et al. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer[J]. Int J Biol Sci, 2021, 17(14): 3850-3861.
doi: 10.7150/ijbs.64630 pmid: 34671203 |
[44] |
Gao Z, Bai Y, Lin A, et al. Gamma delta T-cell-based immune checkpoint therapy: Attractive candidate for antitumor treatment[J]. Mol Cancer, 2023, 22(1): 31.
doi: 10.1186/s12943-023-01722-0 pmid: 36793048 |
[45] |
Cui X, Snapper CM. Epstein Barr Virus: Development of vaccines and immune cell therapy for EBV-associated diseases[J]. Front Immunol, 2021, 12:734471.
doi: 10.3389/fimmu.2021.734471 URL |
[46] |
Dasari V, Sinha D, Neller MA, et al. Prophylactic and therapeutic strategies for epstein-barr virus-associated diseases: Emerging strategies for clinical development[J]. Expert Rev Vaccines, 2019, 18(5): 457-474.
doi: 10.1080/14760584.2019.1605906 pmid: 30987475 |
[47] |
Ji H, Yang T, Li C, et al. EBV-encoded miRNAs BHRF1-1 and BART2-5p aggravate post-transplant lymphoproliferative disorder via LZTS2-PI3K-AKT axis[J]. Biochem Pharmacol, 2023: 214:115676.
doi: 10.1016/j.bcp.2023.115676 URL |
[48] |
Zhang C, Tan Q, Li S, et al. Induction of EBV latent membrane protein-2A (LMP2A)-specific T cells and construction of individualized TCR-engineered T cells for EBV-associated malignancies[J]. J Immunother Cancer, 2021, 9(7):e002516.
doi: 10.1136/jitc-2021-002516 URL |
[1] | Zhao Xuhui, Huang Xiaomin, Da Dezhuan, Xu Yan, Cui Xiaodong, Li Hongling. Screening of glycolysis-related genes for predicting the prognosis of patients with gastric cancer: Based on bioinformatics [J]. Clinical Focus, 2024, 39(1): 20-29. |
[2] | Wang Junhong, Gao Zhenhua, Zhang Ronglong, Ji Haomin, Zhao Xinke, Da Mingxu. Quality analysis of the literatures associated with gastric cancer diagnosis from 1980-2021——A bibliometric analysis based on the Web of Science database [J]. Clinical Focus, 2023, 38(12): 1117-1124. |
[3] | Lyu Chang, Zhou Liming. Correlation between the TNF-α-308 gene polymorphism and gastric cancer susceptibility: A meta-analysis [J]. Clinical Focus, 2023, 38(9): 779-787. |
[4] | Wang Yingnan, Zhao Qi, Bai Haiwei, Wu Danna, Wei Jinmei, Li Shengjiang, Li Ruiling, Zhang Ruixing. Clinical characteristics and risk factors of gastric cancer-related stroke [J]. Clinical Focus, 2023, 38(5): 417-422. |
[5] | Tao Jianan, Tian Wangzhao, An Qi, Wang Xuehong, Zhang Shengqi, Liu Ji. Expression and clinical significance of SLP-2 in gastric cancer: A meta-analysis [J]. Clinical Focus, 2022, 37(4): 299-304. |
[6] | . [J]. Clinical Focus, 2022, 37(1): 77-80. |
[7] | Lu Xunda, Feng Zhijie, Ji Chenguang, Yin Kaige, Liu Li. Analysis on risk factors of postoperative hemorrhage of endoscopic submucosal dissection in early gastric cancer [J]. Clinical Focus, 2021, 36(12): 1087-1091. |
[8] | Yuan Shichao, Zhao Qing, Fan Hongyan. Predictive value of dual-energy CT for Ki-67 expression in gastric stromal tumors and relationship with pathological factors [J]. Clinical Focus, 2021, 36(11): 1013-1018. |
[9] | Jin Ying, Wang Pai, Feng Shibing. Application value of Helicobacter pylori, PG and G17 in diagnosing precancerous lesions of gastric cancer [J]. Clinical Focus, 2021, 36(3): 233-237. |
[10] | Chen Jian, Ren Gang, Cai Rong, Zhao Jianxi, Guo Chen, Li Huali. Clinicopathologic characteristics of signet ring cell carcinoma in T1 gastric cancer [J]. Clinical Focus, 2016, 31(2): 207-210. |
[11] | Lu Ming,Liu Hengchang,Wang Quan. Relationship between RacGAP1 expression in gastric cancer and Helicobacter pylori L-type infection [J]. Clinical Focus, 2016, 31(1): 48-52. |
[12] | Su Huyan;Cai Fei;Huang Puwen. Retrospective analysis of prognostic factors for gastric cancer patients who underwent radical resection [J]. Clinical Focus, 2015, 30(12): 1397-1401. |
[13] | Tong Qiaoyun;Zhou Mingdong;Yuan Jinhua;Ge Cunjin. Diagnostic value of endoscopic ultrasonography-guided endoscopy sucosal resection biopsy in Borrmann type Ⅳ gastric cancer [J]. Clinical Focus, 2015, 30(8): 888-890. |
[14] | Jia Zhenjun;Meng Qinglai;Yin Yuewen. Putative role of p53 expression and Hp infection in gastric carcinogenesis [J]. Clinical Focus, 2015, 30(7): 822-824. |
[15] | . [J]. Clinical Focus, 2015, 30(6): 694-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||