Clinical Focus ›› 2022, Vol. 37 ›› Issue (7): 653-657.doi: 10.3969/j.issn.1004-583X.2022.07.014
Previous Articles Next Articles
Received:
2022-04-06
Online:
2022-07-20
Published:
2022-08-30
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.07.014
[1] |
Goldstein JL, Ho YK, Basu SK, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein,producing massive cholesterol deposition[J]. Proc Natl Acad Sci USA, 1979, 76(1) :333-337.
doi: 10.1073/pnas.76.1.333 URL |
[2] |
Canton J, Neculai D, Grinstein S. Sergio Grinstein Scavenger receptors in homeostasis and immunity[J]. Nat Rev Immunol, 2013, 13(9):621-34.
doi: 10.1038/nri3515 pmid: 23928573 |
[3] |
Li R, Ma H, Jiang L, et al. The CD163 long-range scavenger receptor cysteine-rich repeat: expression, purification and X-ray crystallographic characterization[J]. Acta Crystallogr F Struct Biol Commun, 2018, 74(Pt 5):322-326.
doi: 10.1107/S2053230X18005551 URL |
[4] |
Freeman M, Ashkenas J, Rees DJ, et al. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors[J]. Proc Natl Acad Sci U S A, 1990, 87(22):8810-8814.
doi: 10.1073/pnas.87.22.8810 pmid: 1978939 |
[5] |
Martínez VG, Moestrup SK, Holmskov U, et al. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis[J]. Pharmacol Rev, 2011, 63(4):967-1000.
doi: 10.1124/pr.111.004523 pmid: 21880988 |
[6] |
Martínez VG, Moestrup SK, Holmskov U, et al. Crystal structure of the third extracellular domain of CD5 reveals the fold of a group B scavenger cysteine-rich receptor domain[J]. J Biol Chem, 2007, 282(17):12669-12677.
doi: 10.1074/jbc.M611699200 pmid: 17322294 |
[7] | 郭浩越, 毛锐, 王冉,等. 不同表型肿瘤相关巨噬细胞在肿瘤进展中的作用[J]. 中国肿瘤临, 2018, 45(9):482-486. |
[8] |
Nielsen MJ, Madsen M, Møller HJ, et al. The macrophage scavenger receptor CD163: endocytic properties of cytoplasmic tail variants[J]. J Leukoc Biol, 2006, 79(4):837-845.
doi: 10.1189/jlb.1005602 URL |
[9] | 尚艳楠, 薛江东, 马德慧. CD163分子的研究进展[J]. 中国动物保健, 2015, 17(4):68-70. |
[10] |
Akila P, Prashant V, Suma MN, et al. CD163 and its expanding functional repertoire[J]. Clin Chim Acta, 2012, 413(7-8):669-674.
doi: 10.1016/j.cca.2012.01.028 pmid: 22309681 |
[11] |
Moreno JA, Muñoz-García B, Martín-Ventura JL, et al. The CD163-expressin m acrophages recognize and internalize TW EAK: Potential consequences in atherosclerosis[J] Atherosclerosis, 2009, 207(1):103-110.
doi: 10.1016/j.atherosclerosis.2009.04.033 pmid: 19473660 |
[12] |
Tarin C, Carril M, Martin-Ventura JL, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI[J]. Sci Rep, 2015, 5:17135.
doi: 10.1038/srep17135 pmid: 26616677 |
[13] |
Karrasch T, Brunnler T, Hamer OW, et al. Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity[J]. Exp Mol Pathol, 2015, 99(2):236-239.
doi: 10.1016/j.yexmp.2015.07.006 pmid: 26209500 |
[14] | Rojo-Martinez G, Maymo-Masip E, Rodriguez MM, et al. Serum sCD163 levels are associated with type 2 diabetes mellitus and are influenced by coffee and wine consumption: results of the Di@bet.es study[J]. PLoS One, 2014, 9(6):e101250. |
[15] |
Maniecki MB, Etzerodt A, Ulhoi BP, et al. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells[J]. Int J Cancer, 2012, 131(10):2320-2331.
doi: 10.1002/ijc.27506 pmid: 22362417 |
[16] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
doi: 10.3322/caac.21660 URL |
[17] | 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2019, 41(1):19-28. |
[18] |
Jamiyan T, Kuroda H, Yamaguchi R, et al. CD68-and CD163-positive tumor-associated macrophages in triple negative cancer of the breast[J]. Virchows Archiv, 2020, 477(6):767-775.
doi: 10.1007/s00428-020-02855-z URL |
[19] |
Shabo I, Stal O, Olsson H, et al. Breast cancer expres-sion of CD163, a macrophage scavenger receptor, is related to earlydistant recurrence and reduced patient survival[J]. Int J Cancer, 2008, 123(4):780-786.
doi: 10.1002/ijc.23527 pmid: 18506688 |
[20] |
Yang M, Li Z, Ren M, et al. Stromal infiltration of tumor-associated macrophages conferring poor prognosis of patients with basal-like breast carcinoma[J]. J Cancer, 2018, 9(13):2308-2316.
doi: 10.7150/jca.25155 pmid: 30026826 |
[21] |
Yu YR, Hotten DF, Malakhau Y, et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues[J]. Am J Respir Cell Mol Biol, 2016, 54(1):13-24.
doi: 10.1165/rcmb.2015-0146OC URL |
[22] |
Yuan A, Hsiao YJ, Chen HY, et al. Opposite effects of m1 and M2 macrophage subtypes on lung cancer progression[J]. Sci Rep, 2015, 5:14273.
doi: 10.1038/srep14273 pmid: 26399191 |
[23] |
Matsubara E, Komohara Y, Shinchi Y, et al. CD163‐positive cancer cells are a predictor of a worse clinical course in lung adenocarcinoma[J]. Pathol Int, 2021, 71(10):666-673.
doi: 10.1111/pin.13144 pmid: 34231937 |
[24] |
Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: Good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Communications, 2019, 39(1) :22.
doi: 10.1186/s40880-019-0368-6 URL |
[25] |
Zhang X, Peng Y, Jin Z, et al. Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma[J]. Oncotarget, 2015, 6(32):32878-32889.
doi: 10.18632/oncotarget.5419 pmid: 26460735 |
[26] |
Zhang WJ, Zhou ZH, Guo M, et al. High infiltration of polarized CD163+ tumor-associated macrophages correlates with aberrant expressions of CSCs markers, and predicts prognosis in patients with recurrent gastric cancer[J]. J Cancer, 2017, 8(3):363-370.
doi: 10.7150/jca.16730 URL |
[27] |
Huang X, Pan Y, Ma J, et al. Prognostic significance of the infiltration of CD163+ macrophages combined with CD66b+ neutrophils in gastric cancer[J]. Cancer Med, 2018, 7(5):1731-1741.
doi: 10.1002/cam4.1420 URL |
[28] |
Cheng Z, Zhang D, Gong B, et al. CD163 as a novel target gene of STAT3 is a potential therapeutic target for gastric cancer[J]. Oncotarget, 2017, 8(50):87244-87262.
doi: 10.18632/oncotarget.20244 pmid: 29152078 |
[29] |
Park JY, Sung JY, Lee J, et al. Polarized CD163+ tumor-associated macro-phages are associated with increased angiogenesis and CXCL12 expression in gastric cancer[J]. Clin Res Hepatol Gastroenterol, 2016, 40(3):357-365.
doi: 10.1016/j.clinre.2015.09.005 URL |
[30] | 肖洪斌, 张莹. YAP1 蛋白表达在胰腺癌肿瘤异质性及病理诊断中的应用[J]. 实用肿瘤杂志, 2020, 35(6):530-533. |
[31] |
McGuigan A, Kelly P, Turkington RC, et al. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes[J]. World J Gastroenterol, 2018, 24(43):4846-4861.
doi: 10.3748/wjg.v24.i43.4846 URL |
[32] |
Pan Y, Lu F, Fei Q, et al. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer[J]. J Hematol Oncol, 2019, 12(1):124.
doi: 10.1186/s13045-019-0822-6 URL |
[33] |
Hu H, Hang JJ, Han T, et al. The M2 phenotype of tumor-associated macrophages in the stroma confers a poor prognosis in pancreatic cancer[J]. Tumour Biol, 2016, 37(7):8657-8664.
doi: 10.1007/s13277-015-4741-z URL |
[34] |
Lim CY, Chang JH, Lee WS, et al. CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 and suppress human pancreatic cancer in organotypic slice cultures[J]. Gut and Liver, 2021, 16(4):645-659.
doi: 10.5009/gnl210311 pmid: 34933280 |
[35] |
Cai L, Michelakos T, Deshpande V, et al. Role of tumor-associated macrophages in the clinical course of pancreatic neuroendocrine tumors (PanNETs)[J]. Clin Cancer Res, 2019, 25(8):2644-2655.
doi: 10.1158/1078-0432.CCR-18-1401 pmid: 30670493 |
[36] |
Rami I, Qing C, Margaret B, et al. CD47 expression and CD163+ macrophages correlated with prognosis of pancreatic neuroendocrine tumor[J]. BMC Cancer, 2021, 21(1):320.
doi: 10.1186/s12885-021-08045-7 pmid: 33765961 |
[37] | 蒋娜, 隋燕霞, 蒋依娜, 等, 散发性结直肠癌微卫星不稳定状态与临床病理特征及预后的关系[J]. 安微医科大学学报, 2019, 54(1):139-142. |
[38] |
Shabo I, Olsson H, Sun XF, et al. Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time[J]. Int J Cancer, 2009, 125(8):1826-1831.
doi: 10.1002/ijc.24506 pmid: 19582880 |
[39] |
Chen W, Yang C, Wang S, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J]. Mol Cancer, 2019, 18(1):64.
doi: 10.1186/s12943-019-0976-4 pmid: 30927925 |
[40] |
Xue T, Yan K, Cai Y, et al. Prognostic significance of CD163+ tumor-associated macrophages in colorectal cancer[J]. World J Surg Oncol, 2021, 19(1):186.
doi: 10.1186/s12957-021-02299-y pmid: 34167561 |
[41] | Nagorsen D, Voigt S, Berg E, et al. Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: Relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival[J]. Transl Med, 2007, 5(1):62. |
[42] |
Minami K, Hiwatashi K, Ueno S, et al. Prognostic significance of CD68, CD163 and Folate receptor-β positive macrophages in hepatocellular carcinoma[J]. Exp Ther Med, 2018, 15(5):4465-4476.
doi: 10.3892/etm.2018.5959 pmid: 29731831 |
[43] | Kong LQ, Zhu XD, Xu HX, et al. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma[J]. PLoS One, 2013, 8(3):e59771. |
[44] |
Hasita H, Komohara Y, Okabe H, et al. Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma[J]. Cancer Sci, 2010, 101(8):1913-1919.
doi: 10.1111/j.1349-7006.2010.01614.x URL |
[45] |
Kanno H, Nishihara H, Wang L, et al. Expression of CD163 prevents apoptosis through the production of granulocyte colony-stimulating factor in meningioma[J]. Neuro Oncol, 2013, 15(7):853-864.
doi: 10.1093/neuonc/not028 URL |
[46] |
Andersen MN, Abildgaard N, Maniecki MB, et al. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma[J]. Eur J Haematol, 2014, 93(1): 41-47.
doi: 10.1111/ejh.12296 pmid: 24612259 |
[47] | He KF, Zhang L, Huang CF, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma[J]. Biomed Res Int, 2014:838632. |
[48] |
Kridel R, Xerri L, Gelas-Dore B, et al. The Prognostic impact of CD163-positive macrophages in follicular lymphoma:a study from the BC cancer agency and the lymphoma study association[J]. Clin Cancer Res, 2015, 21(15):3428-3435.
doi: 10.1158/1078-0432.CCR-14-3253 URL |
[49] |
Vajavaara H, Ekeblad F, Holte H, et al. Prognostic impact of soluble CD163 in patients with diffuse large B-cell lymphoma[J]. Haematologica, 2021, 106(9):2502-2506.
doi: 10.3324/haematol.2020.278182 pmid: 33764002 |
[50] |
Wang C, Hong T, Wang Y, et al. Combining UBR5 and CD163+ tumor-associated macrophages better predicts prognosis of clear cell renal cell carcinoma patients[J]. Cancer Immunology, Immunotherapy, 2021, 70(10): 2925-2935.
doi: 10.1007/s00262-021-02885-9 URL |
[51] |
Andersen MN, Abildgaard N, Maniecki MB, et al. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma[J]. Eur J Haematol, 2014, 93(1):41-47.
doi: 10.1111/ejh.12296 pmid: 24612259 |
[52] | Sugimura K, Miyata H, Tanaka K, et al. High infiltration of tumor-associated macrophages is associated with a poor response to chemotherapy and poor prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer[J]. Surg Oncol, 2015, 111(6):752-759. |
[53] |
Yagi T, Baba Y, Okadome K, et al. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer[J]. Eur J Cancer, 2019, 111:38-49.
doi: S0959-8049(19)30039-5 pmid: 30822683 |
[1] | . [J]. Clinical Focus, 2023, 38(3): 273-278. |
[2] | . [J]. CLINICAL FOCUS, 2013, 28(12): 1382-1382. |
[3] | . [J]. CLINICAL FOCUS, 2013, 28(10): 1131-1133. |
[4] | . [J]. Clinical Focus, 2012, 27(11): 1005-1008. |
[5] | CUI Rong;WU Yong-juan;YANG Yan-xia;HUA Yun-qi;LIU Li-ping;TAN Ya-qin;ZHANG Wen-hui;YUAN Hai-qing . Clinical analysis of effect and cardio-toxicity of gefitinib and docetaxel in treatment of elderly patients with advanced lung adenocarcinoma [J]. CLINICAL FOCUS, 2011, 26(13): 1131-1133. |
[6] | . [J]. CLINICAL FOCUS, 2011, 26(12): 1098-1101. |
[7] | . [J]. CLINICAL FOCUS, 2010, 25(13): 1170-1171. |
[8] | . [J]. CLINICAL FOCUS, 2009, 24(22): 1985-1986. |
[9] | ZHAO Min;LI Jian-hang;ZHANG Hong-bing;LIANG Jian;ZHENG Ai-li. Application of lentinan for treatment of malignant pericardial effusion in elderly patients [J]. CLINICAL FOCUS, 2009, 24(20): 1764-1766. |
[10] | . [J]. CLINICAL FOCUS, 2008, 23(21): 1590-1592. |
[11] | . [J]. CLINICAL FOCUS, 2008, 23(5): 358-359. |
[12] | . [J]. CLINICAL FOCUS, 2007, 22(20): 1504-1505. |
[13] | . [J]. CLINICAL FOCUS, 2007, 22(18): 1336-1337. |
[14] | DING Xiao-xu;SUN Bao-xin;DU Xin-sheng;XUE Cheng-yan. Change and clinical meaning in detection of carcinoembryonic antigen mRNA in ascites before and after intraperitoneal chemotherapy [J]. CLINICAL FOCUS, 2007, 22(16): 1151-1153. |
[15] | . [J]. CLINICAL FOCUS, 2007, 22(16): 1199-1200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||