Clinical Focus ›› 2023, Vol. 38 ›› Issue (3): 273-278.doi: 10.3969/j.issn.1004-583X.2023.03.015
Previous Articles Next Articles
Received:
2022-10-20
Online:
2023-03-20
Published:
2023-05-11
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.03.015
抑制剂 | 靶点 | 肿瘤 |
---|---|---|
JQ1 | BRD4 | 前列腺癌[ |
I-BET151 | BRD4 | 急性髓性白血病[ |
BETd-246 | BRD2,BRD3,BRD4 | 三阴性乳腺癌[ |
GS-5829 | BRD2,BRD3,BRD4 | 慢性淋巴细胞性白血病[ |
INCB057643 | BRD2,BRD3,BRD4 | 胰腺癌[ |
INCB054329 | BRD2,BRD3,BRD4 | 卵巢癌[ |
THZ1 | CDK7 | 卵巢癌[ |
THZ2 | CDK7 | 骨肉瘤[ |
SY-1365 | CDK7 | 卵巢癌和乳腺癌[ |
THZ531 | CDK12,CDK13 | 前列腺癌[ |
Lee011 | CDK4, CDK6 | 乳腺癌[ |
GZ17-6.02 | - | 胰腺导管腺癌[ |
SY-1425 | RARα | 急性髓性白血病[ |
抑制剂 | 靶点 | 肿瘤 |
---|---|---|
JQ1 | BRD4 | 前列腺癌[ |
I-BET151 | BRD4 | 急性髓性白血病[ |
BETd-246 | BRD2,BRD3,BRD4 | 三阴性乳腺癌[ |
GS-5829 | BRD2,BRD3,BRD4 | 慢性淋巴细胞性白血病[ |
INCB057643 | BRD2,BRD3,BRD4 | 胰腺癌[ |
INCB054329 | BRD2,BRD3,BRD4 | 卵巢癌[ |
THZ1 | CDK7 | 卵巢癌[ |
THZ2 | CDK7 | 骨肉瘤[ |
SY-1365 | CDK7 | 卵巢癌和乳腺癌[ |
THZ531 | CDK12,CDK13 | 前列腺癌[ |
Lee011 | CDK4, CDK6 | 乳腺癌[ |
GZ17-6.02 | - | 胰腺导管腺癌[ |
SY-1425 | RARα | 急性髓性白血病[ |
抑制剂 | 靶点 | 肿瘤 | 临床试验 |
---|---|---|---|
OTX-015 | BRD2, BRD3, BRD4 | 急性髓系白血病,弥漫大B细胞淋巴瘤,急性淋巴细胞白血病,多发性骨髓瘤 | Ⅰ/Ⅱ期,NCT02303782,撤销 |
急性髓系白血病 | Ⅰ/Ⅱ期,NCT02303782,撤销 | ||
多形性胶质母细胞瘤 | Ⅱ期,NCT02296476,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌 | Ⅰ期,NCT02698176,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌,胰腺导管腺癌 | Ⅰ期,NCT02259114,完成 | ||
急性髓性白血病,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT02698189,终止 | ||
CPI-0610 | BRD4 | 周围神经肿瘤 | Ⅱ期,NCT02986919,撤销 |
多发性骨髓瘤 | Ⅱ期,NCT04603495,招募 | ||
多发性骨髓瘤 | Ⅰ期,NCT02157636,完成 | ||
淋巴瘤 | Ⅰ期,NCT01949883,完成 | ||
I-BET762 | BRD2, BRD3 BRD4 | 复发性或难治性血液系统恶性肿瘤 | Ⅰ期,NCT01943851,完成 |
激素受体阳性(HR+)/人表皮生长因子受体2阴性(HER2-)晚期或转移性乳腺癌 | Ⅱ期,NCT02964507,完成 | ||
实体瘤 | Ⅱ期,NCT03266159,撤销 | ||
去势抵抗性前列腺癌 | Ⅱ期,NCT03150056,招募 | ||
NUT中线癌、小细胞肺癌、非小细胞肺癌、结直肠癌、神经母细胞瘤、去势抵抗性前列腺癌、三阴性乳腺癌、雌激素受体阳性(ER阳性)乳腺癌、MYCN驱动的实体瘤 | Ⅰ期,NCT01587703,完成 | ||
晚期或难治性实体瘤或淋巴瘤 | Ⅰ期,NCT03925428,撤销 | ||
转移性或不可切除性NUT中线癌 | Ⅰ/Ⅱ期,NCT04116359,撤销 | ||
NUT中线癌 | NCT03702036,已失效 | ||
TEN-010 | BRD2, BRD3 BRD4 | NUT中线癌,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT01987362,完成 |
急性髓系白血病,骨髓增生异常综合征 | Ⅰ期,NCT02308761,完成 | ||
弥漫大B细胞淋巴瘤,高级别B细胞淋巴瘤 | Ⅰ期,NCT03255096,完成 | ||
GS-5829 | BRD2,BRD3,BRD4 | 晚期实体瘤,淋巴瘤 | Ⅰ期,NCT02392611,完成 |
晚期雌激素受体阳性HER2阴性乳腺癌 | Ⅰ/Ⅱ期,NCT02983604,终止 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02607228,终止 | ||
ODM207 | BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT0303559,完成 |
INCB057643 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02711137,终止 |
晚期实体瘤 | Ⅰ/Ⅱ期,NCT02959437,完成 | ||
INCB054329 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02431260,终止 |
BMS-986158 | BRD2,BRD3,BRD4 | 小儿实体肿瘤,淋巴瘤,小儿脑瘤 | Ⅰ期,NCT03936465,招募 |
晚期肿瘤 | Ⅰ/Ⅱ期,NCT02419417,招募 | ||
ZEN003694 | BRD2,BRD3,BRD4 | 转移性去势抵抗性前列腺癌 | Ⅰ期,NCT04986423,招募 |
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT04145375,招募 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02711956,完成 | ||
转移性去势抵抗性前列腺癌 | Ⅰ期,NCT02705469,完成 | ||
复发性卵巢、输卵管癌或原发性腹膜癌 | Ⅱ期,NCT05071937,未招募 | ||
三阴性乳腺癌 | Ⅱ期,NCT03901469,未招募 | ||
晚期和难治性实体肿瘤和淋巴瘤 | Ⅰ/Ⅱ期,NCT05053971,未招募 | ||
转移性或复发性恶性实体瘤,复发性铂耐药卵巢癌,难治性卵巢癌 | Ⅰ期, NCT04840589,招募 | ||
进展期/转移性/不可切除的NUT中线癌 | Ⅰ/Ⅱ期,NCT05019716,未招募 | ||
去势抵抗性前列腺癌/转移性前列腺癌/转移性前列腺小细胞癌 | Ⅱ期,NCT04471974,招募 | ||
PLX2853 | PLX2853 | 妇科恶性肿瘤,卵巢恶性肿瘤 | Ⅰ/Ⅱ期,NCT04493619,招募 |
小细胞肺癌,葡萄膜黑色素瘤,卵巢透明细胞癌,非霍奇金淋巴瘤,晚期恶性肿瘤,实体瘤,弥漫性大B细胞淋巴瘤,滤泡淋巴瘤 | Ⅰ/Ⅱ期,NCT03297424,完成 | ||
复发性或难治性急性髓性白血病(AML),骨髓增生异常综合征(MDS) | Ⅱ期,NCT03787498,完成 | ||
转移性去势性前列腺癌 | Ⅰ期,NCT04556617,完成 | ||
BI 894999 | BRD4 | 晚期恶性肿瘤,NUT中线癌 | Ⅰ期,NCT02516553,完成 |
GSK2820151 | BRD2,BRD3,BRD4 | 复发或晚期实体瘤 | Ⅰ期,NCT02630251,终止 |
BAY 1238097 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ期,NCT02369029,终止 |
SY-1365 | CDK7 | 晚期实体瘤,乳腺癌,卵巢癌 | Ⅰ期,NCT03134638,终止 |
THZ531 | CDK12,CDK13 | 卵巢癌 | 肿瘤活检,NCT04555473,招募 |
Lee011 | CDK4, CDK6 | 晚期实体瘤,巨块型肿瘤 | Ⅰ期,NCT02934568,招募 |
晚期实体肿瘤,转移性激素受体阳性乳腺癌 | Ⅰ/Ⅰb期,NCT03775525,招募 | ||
SY-1425 | RARα | 急性髓系白血病,骨髓增生异常综合征 | Ⅱ期,NCT02807558,未招募 |
抑制剂 | 靶点 | 肿瘤 | 临床试验 |
---|---|---|---|
OTX-015 | BRD2, BRD3, BRD4 | 急性髓系白血病,弥漫大B细胞淋巴瘤,急性淋巴细胞白血病,多发性骨髓瘤 | Ⅰ/Ⅱ期,NCT02303782,撤销 |
急性髓系白血病 | Ⅰ/Ⅱ期,NCT02303782,撤销 | ||
多形性胶质母细胞瘤 | Ⅱ期,NCT02296476,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌 | Ⅰ期,NCT02698176,终止 | ||
NUT中线癌,三阴性乳腺癌,非小细胞肺癌,去势抵抗性前列腺癌,胰腺导管腺癌 | Ⅰ期,NCT02259114,完成 | ||
急性髓性白血病,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT02698189,终止 | ||
CPI-0610 | BRD4 | 周围神经肿瘤 | Ⅱ期,NCT02986919,撤销 |
多发性骨髓瘤 | Ⅱ期,NCT04603495,招募 | ||
多发性骨髓瘤 | Ⅰ期,NCT02157636,完成 | ||
淋巴瘤 | Ⅰ期,NCT01949883,完成 | ||
I-BET762 | BRD2, BRD3 BRD4 | 复发性或难治性血液系统恶性肿瘤 | Ⅰ期,NCT01943851,完成 |
激素受体阳性(HR+)/人表皮生长因子受体2阴性(HER2-)晚期或转移性乳腺癌 | Ⅱ期,NCT02964507,完成 | ||
实体瘤 | Ⅱ期,NCT03266159,撤销 | ||
去势抵抗性前列腺癌 | Ⅱ期,NCT03150056,招募 | ||
NUT中线癌、小细胞肺癌、非小细胞肺癌、结直肠癌、神经母细胞瘤、去势抵抗性前列腺癌、三阴性乳腺癌、雌激素受体阳性(ER阳性)乳腺癌、MYCN驱动的实体瘤 | Ⅰ期,NCT01587703,完成 | ||
晚期或难治性实体瘤或淋巴瘤 | Ⅰ期,NCT03925428,撤销 | ||
转移性或不可切除性NUT中线癌 | Ⅰ/Ⅱ期,NCT04116359,撤销 | ||
NUT中线癌 | NCT03702036,已失效 | ||
TEN-010 | BRD2, BRD3 BRD4 | NUT中线癌,弥漫大B细胞淋巴瘤 | Ⅰ期,NCT01987362,完成 |
急性髓系白血病,骨髓增生异常综合征 | Ⅰ期,NCT02308761,完成 | ||
弥漫大B细胞淋巴瘤,高级别B细胞淋巴瘤 | Ⅰ期,NCT03255096,完成 | ||
GS-5829 | BRD2,BRD3,BRD4 | 晚期实体瘤,淋巴瘤 | Ⅰ期,NCT02392611,完成 |
晚期雌激素受体阳性HER2阴性乳腺癌 | Ⅰ/Ⅱ期,NCT02983604,终止 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02607228,终止 | ||
ODM207 | BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT0303559,完成 |
INCB057643 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02711137,终止 |
晚期实体瘤 | Ⅰ/Ⅱ期,NCT02959437,完成 | ||
INCB054329 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ/Ⅱ期,NCT02431260,终止 |
BMS-986158 | BRD2,BRD3,BRD4 | 小儿实体肿瘤,淋巴瘤,小儿脑瘤 | Ⅰ期,NCT03936465,招募 |
晚期肿瘤 | Ⅰ/Ⅱ期,NCT02419417,招募 | ||
ZEN003694 | BRD2,BRD3,BRD4 | 转移性去势抵抗性前列腺癌 | Ⅰ期,NCT04986423,招募 |
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT04145375,招募 | ||
转移性去势抵抗性前列腺癌 | Ⅰ/Ⅱ期,NCT02711956,完成 | ||
转移性去势抵抗性前列腺癌 | Ⅰ期,NCT02705469,完成 | ||
复发性卵巢、输卵管癌或原发性腹膜癌 | Ⅱ期,NCT05071937,未招募 | ||
三阴性乳腺癌 | Ⅱ期,NCT03901469,未招募 | ||
晚期和难治性实体肿瘤和淋巴瘤 | Ⅰ/Ⅱ期,NCT05053971,未招募 | ||
转移性或复发性恶性实体瘤,复发性铂耐药卵巢癌,难治性卵巢癌 | Ⅰ期, NCT04840589,招募 | ||
进展期/转移性/不可切除的NUT中线癌 | Ⅰ/Ⅱ期,NCT05019716,未招募 | ||
去势抵抗性前列腺癌/转移性前列腺癌/转移性前列腺小细胞癌 | Ⅱ期,NCT04471974,招募 | ||
PLX2853 | PLX2853 | 妇科恶性肿瘤,卵巢恶性肿瘤 | Ⅰ/Ⅱ期,NCT04493619,招募 |
小细胞肺癌,葡萄膜黑色素瘤,卵巢透明细胞癌,非霍奇金淋巴瘤,晚期恶性肿瘤,实体瘤,弥漫性大B细胞淋巴瘤,滤泡淋巴瘤 | Ⅰ/Ⅱ期,NCT03297424,完成 | ||
复发性或难治性急性髓性白血病(AML),骨髓增生异常综合征(MDS) | Ⅱ期,NCT03787498,完成 | ||
转移性去势性前列腺癌 | Ⅰ期,NCT04556617,完成 | ||
BI 894999 | BRD4 | 晚期恶性肿瘤,NUT中线癌 | Ⅰ期,NCT02516553,完成 |
GSK2820151 | BRD2,BRD3,BRD4 | 复发或晚期实体瘤 | Ⅰ期,NCT02630251,终止 |
BAY 1238097 | BRD2,BRD3,BRD4 | 晚期实体瘤 | Ⅰ期,NCT02369029,终止 |
SY-1365 | CDK7 | 晚期实体瘤,乳腺癌,卵巢癌 | Ⅰ期,NCT03134638,终止 |
THZ531 | CDK12,CDK13 | 卵巢癌 | 肿瘤活检,NCT04555473,招募 |
Lee011 | CDK4, CDK6 | 晚期实体瘤,巨块型肿瘤 | Ⅰ期,NCT02934568,招募 |
晚期实体肿瘤,转移性激素受体阳性乳腺癌 | Ⅰ/Ⅰb期,NCT03775525,招募 | ||
SY-1425 | RARα | 急性髓系白血病,骨髓增生异常综合征 | Ⅱ期,NCT02807558,未招募 |
[1] |
Sur I, Taipale J. The role of enhancers in cancer[J]. Nat Rev Cancer, 2016, 16(8):483-493.
doi: 10.1038/nrc.2016.62 pmid: 27364481 |
[2] |
Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity gene[J]. Cell, 2013, 153(2):307-319.
doi: 10.1016/j.cell.2013.03.035 URL |
[3] |
Kimura H. Histone modifications for human epigenome analysis[J]. J Hum Genet, 2013, 58(7):439-445.
doi: 10.1038/jhg.2013.66 pmid: 23739122 |
[4] |
Villar D, Berthelot C, Aldridge S, et al. Enhancer evolution across 20 mammalian species[J]. Cell, 2015, 160(3):554-566.
doi: 10.1016/j.cell.2015.01.006 pmid: 25635462 |
[5] | 周洋, 施晓敏, 韩澍, 等. SEs的发现与研究进展[J]. 国际生殖健康/计划生育杂志, 2017, 36(2):137-141+159. |
[6] |
Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer[J]. Trends Cancer, 2017, 3(4):269-281.
doi: S2405-8033(17)30061-4 pmid: 28718439 |
[7] | 吴志强, 米泽云. 超级增强子在肿瘤研究中的进展[J]. 遗传, 2019, 41(1):41-51. |
[8] |
Loven J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers[J]. Cell, 2013, 153(2):320-334.
doi: 10.1016/j.cell.2013.03.036 pmid: 23582323 |
[9] |
Hnisz D, Schuijers J, Lin CY, et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers[J]. Mol Cell, 2015, 58(2):362-370.
doi: 10.1016/j.molcel.2015.02.014 pmid: 25801169 |
[10] |
Yimlamai D, Fowl BH, Camargo FD. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer[J]. J Hepatol, 2015, 63(6):1491-1501.
doi: 10.1016/j.jhep.2015.07.008 pmid: 26226451 |
[11] |
Nabet B, Broin P, Reyes JM, et al. Deregulation of the Ras-Erk signaling sxis modulates the enhancer landscape[J]. Cell Rep, 2015, 12(8):1300-1313.
doi: 10.1016/j.celrep.2015.06.078 URL |
[12] |
Niederriter AR, Varshney A, Parker SC, et al. Super enhancers in cancers, complex disease, and developmental disorders[J]. Genes, 2015, 6(4):1183-1200.
doi: 10.3390/genes6041183 pmid: 26569311 |
[13] |
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155(4):934-947.
doi: 10.1016/j.cell.2013.09.053 pmid: 24119843 |
[14] |
Jiang YY, Lin DC, Mayakonda A, et al. Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma[J]. Gut, 2017, 66(8):1358-1368.
doi: 10.1136/gutjnl-2016-311818 URL |
[15] |
Jiang Y, Jiang YY, Xie JJ, et al. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression[J]. Nat Commun, 2018, 9(1):3619.
doi: 10.1038/s41467-018-06081-9 pmid: 30190462 |
[16] |
Xie JJ, Jiang YY, Jiang Y, et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma[J]. Gastroenterology, 2018, 154(8):2137-2151.
doi: S0016-5085(18)30213-0 pmid: 29454790 |
[17] |
Lin X, Spindler TJ, de Souza Fonseca MA, et al. A super-enhancer-associated LncRNA UCA1 interacts directly with AMOT to activate YAP target genes in epithelial ovarian cancer[J]. IScience, 2019, 17:242-255.
doi: S2589-0042(19)30208-1 pmid: 31307004 |
[18] |
Jiao W, Chen Y, Song H, et al. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis[J]. Oncogene, 2018, 37(20): 2728-2745.
doi: 10.1038/s41388-018-0128-0 pmid: 29511351 |
[19] | 程霄, 杨琼, 谭镇东, 等. 增强子RNA研究现状[J]. 遗传, 2017, 39(9):784-797. |
[20] | Yang YS, Jin X, Li Q, et al. Superenhancer drives a tumor-specific splicing variant of MARCO to promote triple-negative breast cancer progression[J]. Proc Natl Acad Sci U S A, 2022, 119(46): e2207201119. |
[21] |
Pajtler KW, Witt H, Sill M, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups[J]. Cancer Cell, 2015, 27(5):728-743.
doi: 10.1016/j.ccell.2015.04.002 pmid: 25965575 |
[22] |
Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans[J]. Nat Rev Genet, 2012, 13(10):720-731.
doi: 10.1038/nrg3293 pmid: 22986266 |
[23] |
Wang Y, Shen N, Li S, et al. Synergistic therapy for cervical cancer by codelivery of cisplatin and JQ1 inhibiting Plk1-Mutant Trp53 Axis[J]. Nano Lett, 2021, 21(6): 2412-2421.
doi: 10.1021/acs.nanolett.0c04402 pmid: 33705152 |
[24] |
Xu Y, Pachnikova G, Przybilla D, et al. Evaluation of JQ1 combined with docetaxel for the treatment of prostate cancer cells in 2D- and 3D-culture systems[J]. Front Pharmacol, 2022, 13:839620.
doi: 10.3389/fphar.2022.839620 URL |
[25] |
Chen B, Liu X, Li Y, et al. iRGD tumor-penetrating peptide-modified nanodelivery system based on a marine sulfated polysaccharide for enhanced anti-tumor efficiencyagainst breast cancer[J]. Int J Nanomedicine, 2022, 17:617-633.
doi: 10.2147/IJN.S343902 URL |
[26] |
Fourniols T, Maggio V, Rafael D, et al. Colorectal cancer inhibition by BET inhibitor JQ1 is MYC-independent and not improved by nanoencapsulation[J]. Eur J Pharm Biopharm, 2022, 171:39-49.
doi: 10.1016/j.ejpb.2021.10.017 pmid: 34998911 |
[27] |
Pelish HE, Liau BB, Nitulescu II, et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML[J]. Nature, 2015, 526(7572):273-276.
doi: 10.1038/nature14904 |
[28] |
Yao Z, Yang S, Zhao H, et al. BET inhibitor I-BET151 sensitizes GBM cells to temozolomide via PUMA induction[J]. Cancer Gene Ther, 2022, 29(10):1528.
doi: 10.1038/s41417-022-00536-4 |
[29] | Guo NH, Zheng JF, Zi FM, et al. I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma[J]. Biosci Rep, 2019, 39(5):BSR20181245. |
[30] |
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer[J]. Pharmacol Res, 2018, 129:156-176.
doi: S1043-6618(17)31403-2 pmid: 29154989 |
[31] |
Choi JE, Verhaegen ME, Yazdani S, et al. Characterizing the therapeutic potential of a potent BET degrader in Merkel mell carcinoma[J]. Neoplasia, 2019, 21(3):322-330.
doi: S1476-5586(18)30532-3 pmid: 30797188 |
[32] |
Bai L, Zhou B, Yang CY, et al. Targeted degradation of BET proteins in triple-negative breast cancer[J]. Cancer Res, 2017, 77(9):2476-2487.
doi: 10.1158/0008-5472.CAN-16-2622 pmid: 28209615 |
[33] |
Kim E, Ten Hacken E, Sivina M, et al. The BET inhibitor GS-5829 targets chronic lymphocytic leukemia cells and their supportive microenvironment[J]. Leukemia, 2020, 34(6):1588-1598.
doi: 10.1038/s41375-019-0682-7 pmid: 31862959 |
[34] |
Zeybek B, Lopez S, Santin AD. BET inhibitors: Betting on improved outcomes in uterine serous carcinoma[J]. Oncotarget, 2018, 9(84):35470-35471.
doi: 10.18632/oncotarget.26245 pmid: 30464799 |
[35] |
Leal AS, Liu P, Krieger-Burke T, et al. The Bromodomain inhibitor, INCB057643, targets both cancer cells and the tumor microenvironment in two preclinical models of pancreatic cancer[J]. Cancers (Basel), 2020, 13(1):96.
doi: 10.3390/cancers13010096 URL |
[36] |
Deng M, Xu-Monette ZY, Pham LV, et al. Aggressive B-cell lymphoma with MYC/TP53 dual alterations displays distinct clinicopathobiological features and response to novel targeted agents[J]. Mol Cancer Res, 2021, 19(2):249-260.
doi: 10.1158/1541-7786.MCR-20-0466 pmid: 33154093 |
[37] |
Vázquez R, Civenni G, Kokanovic A, et al. Efficacy of novel bromodomain and extraterminal inhibitors in combination with chemotherapy for castration-resistant prostate cancer[J]. Eur Urol Oncol, 2021, 4(3):437-446.
doi: 10.1016/j.euo.2019.07.013 pmid: 31402217 |
[38] |
Ramsey HE, Greenwood D, Zhang S, et al. BET inhibition enhances the antileukemic activity of low-dose Venetoclax in acute myeloid leukemia[J]. Clin Cancer Res, 2021, 27(2):598-607.
doi: 10.1158/1078-0432.CCR-20-1346 pmid: 33148670 |
[39] |
Stubbs MC, Burn TC, Sparks R, et al. The novel bromodomain and extraterminal domain inhibitor INCB054329 induces vulnerabilities in myeloma cells That inform rational combination strategies[J]. Clin Cancer Res, 2019, 25(1):300-311.
doi: 10.1158/1078-0432.CCR-18-0098 pmid: 30206163 |
[40] |
Jauset T, Massó-Vallés D, Martínez-Martín S, et al. BET inhibition is an effective approach against KRAS-driven PDAC and NSCLC[J]. Oncotarget, 2018, 9(27):18734-18746.
doi: 10.18632/oncotarget.24648 pmid: 29721157 |
[41] |
Huang X, Qiu M, Wang T, et al. Carrier-free multifunctional nanomedicine for intraperitoneal disseminated ovarian cancer therapy[J]. J Nanobiotechnology, 2022, 20(1):93.
doi: 10.1186/s12951-022-01300-4 |
[42] |
Gao L, Xia S, Zhang K, et al. Gene expression profile of THZ1-treated nasopharyngeal carcinoma cell lines indicates its involvement in the inhibition of the cell cycle[J]. Transl Cancer Res, 2021, 10(1):445-460.
doi: 10.21037/tcr-19-2888 pmid: 35116274 |
[43] | Yang Y, Jiang D, Zhou Z, et al. CDK7 blockade suppresses super-enhancer-associated oncogenes in bladder cancer[J]. Cell Oncol (Dordr), 2021, 44(4):871-887. |
[44] |
Christensen CL, Kwiatkowski N, Abraham BJ, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor[J]. Cancer Cell, 2014, 26(6):909-922.
doi: S1535-6108(14)00423-1 pmid: 25490451 |
[45] |
Zhang J, Liu W, Zou C, et al. Targeting super-enhancer-associated oncogenes in osteosarcoma with THZ2, a covalent CDK7 inhibitor[J]. Clin Cancer Res, 2020, 26(11):2681-2692.
doi: 10.1158/1078-0432.CCR-19-1418 pmid: 31937612 |
[46] | Huang JR, Qin WM, Wang K, et al. Cyclin-dependent kinase 7 inhibitor THZ2 inhibits the growth of human gastric cancer?in vitro?and?in vivo[J]. Am J Transl Res, 2018, 10(11):3664-3676. |
[47] |
Hu S, Marineau JJ, Rajagopal N, et al. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7[J]. Cancer Res, 2019, 79(13):3479-3491.
doi: 10.1158/0008-5472.CAN-19-0119 pmid: 31064851 |
[48] |
Lei H, Wang Z, Jiang D, et al. CRISPR screening identifies CDK12 as a conservative vulnerability of prostate cancer[J]. Cell Death Dis, 2021, 12(8):740.
doi: 10.1038/s41419-021-04027-6 pmid: 34315855 |
[49] |
Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors[J]. Nat Chem Biol, 2016, 12(10):876-884.
doi: 10.1038/nchembio.2166 pmid: 27571479 |
[50] |
Geng M, Yang Y, Cao X, et al. Targeting CDK12-mediated transcription regulation in anaplastic thyroid carcinoma[J]. Biochem Biophys Res Commun, 2019, 520(3):544-550.
doi: 10.1016/j.bbrc.2019.10.052 URL |
[51] |
Tripathy D, Bardia A, Sellers WR. Ribociclib (LEE011): Mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors[J]. Clin Cancer Res, 2017, 23(13):3251-3262.
doi: 10.1158/1078-0432.CCR-16-3157 pmid: 28351928 |
[52] |
Kennedy AL, Vallurupalli M, Chen L, et al. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma[J]. Oncotarget, 2015, 6(30):30178-30193.
doi: 10.18632/oncotarget.4903 pmid: 26337082 |
[53] |
Ghosh C, Paul S, Dandawate P, et al. Super-enhancers: novel target for pancreatic ductal adenocarcinoma[J]. Oncotarget, 2019, 10(16):1554-1571.
doi: 10.18632/oncotarget.26704 pmid: 30899425 |
[54] |
Choi J, Bordeaux ZA, McKeel J, et al. GZ17-6.02 02 inhibits the growth of EGFRvIII+ Glioblastoma[J]. Int J Mol Sci, 2022, 23(8):4174.
doi: 10.3390/ijms23084174 URL |
[55] |
McKeown MR, Johannessen L, Lee E, et al. Antitumor synergy with SY-1425, a selective RARα agonist, and hypomethylating agents in retinoic acid receptor pathway activated models of acute myeloid leukemia[J]. Haematologica, 2019, 104(4):e138-e142.
doi: 10.3324/haematol.2018.192807 URL |
[56] |
Noguchi-Yachide T. BET bromodomain as a target of epigenetic therapy[J]. Chem Pharm Bull (Tokyo), 2016, 64(6):540-547.
doi: 10.1248/cpb.c16-00225 URL |
[57] | 柳克俊, 张智敏, 冉挺, 等. BET bromodomain蛋白小分子抑制剂研究进展[J]. 中国医科大学学报, 2015, 46 (3):264 -271. |
[58] |
Shin HY. Targeting super-enhancers for disease treatment and diagnosis[J]. Mol Cells, 2018, 41(6):506-514.
doi: 10.14348/molcells.2018.2297 pmid: 29754476 |
[59] |
Nakamura Y, Hattori N, Iida N, et al. Targeting of super-enhancers and mutant BRAF can suppress growth of BRAF-mutant colon cancer cells via repression of MAPK signaling pathway[J]. Cancer Lett, 2017, 402:100-109.
doi: S0304-3835(17)30353-1 pmid: 28576751 |
[60] |
Zhu X, Zhang T, Zhang Y, et al. A super-enhancer controls TGF- β signaling in pancreatic cancer through downregulation of TGFBR2[J]. Cell Signal, 2020, 66: 109470.
doi: 10.1016/j.cellsig.2019.109470 URL |
[61] |
Cheng W, Yang Z, Wang S, et al. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures[J]. Eur J Med Chem, 2019, 164:615-639.
doi: S0223-5234(19)30003-0 pmid: 30639897 |
[62] |
Nagaraja S, Vitanza NA, Woo PJ, et al. Transcriptional dependencies in diffuse intrinsic pontine glioma[J]. Cancer Cell, 2017, 31(5):635-652.
doi: S1535-6108(17)30107-1 pmid: 28434841 |
[63] |
Zheng C, Liu M, Fan H. Targeting complexes of super-enhancers is a promising strategy for cancer therapy[J]. Oncol Lett, 2020, 20(3):2557-2566.
doi: 10.3892/ol.2020.11855 pmid: 32782573 |
[64] |
Gao Y, Volegova M, Nasholm N, et al. Synergistic anti-tumor effect of combining selective CDK7 and BRD4 inhibition in neuroblastoma[J]. Front Oncol, 2022, 11:773186.
doi: 10.3389/fonc.2021.773186 URL |
[65] |
Ma X, Kuang X, Xia Q, et al. Covalent CDK7 inhibitor THZ1 inhibits myogenic differentiation[J]. J Cancer, 2018, 9(17):3149-3155.
doi: 10.7150/jca.25395 pmid: 30210638 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||