Clinical Focus ›› 2023, Vol. 38 ›› Issue (8): 749-752.doi: 10.3969/j.issn.1004-583X.2023.08.013
Previous Articles Next Articles
Received:
2023-02-24
Online:
2023-08-20
Published:
2023-09-28
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.08.013
[1] | Agarwal AK, Raja A, Brown BD. Chronic obstructive pulmonary disease[M]. Treasure Island (FL): StatPearls, 2023. |
[2] |
Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
doi: 10.1016/S0140-6736(20)30925-9 pmid: 33069326 |
[3] |
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study[J]. Lancet, 2018, 391(10131): 1706-1717.
doi: S0140-6736(18)30841-9 pmid: 29650248 |
[4] |
Wu CT, Li GH, Huang CT, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: Development and cohort study[J]. JMIR Mhealth Uhealth, 2021, 9(5): e22591.
doi: 10.2196/22591 URL |
[5] |
Tacheva T, Zienolddiny S, Dimov D, et al. The leukocyte telomere length, single nucleotide polymorphisms near TERC gene and risk of COPD[J]. PeerJ, 2021, 9: e12190.
doi: 10.7717/peerj.12190 URL |
[6] |
Erichsen L, Kloss LDF, Thimm C, et al. Derivation of the immortalized cell line UM51-PrePodo-hTERT and its responsiveness to angiotensin II and activation of the RAAS pathway[J]. Cells, 2023, 12(3): 342.
doi: 10.3390/cells12030342 URL |
[7] |
Aghali A, Khalfaoui L, Lagnado AB, et al. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 323(5): L558-L568.
doi: 10.1152/ajplung.00146.2022 URL |
[8] |
Duckworth A, Gibbons MA, Allen RJ, et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: A mendelian randomisation study[J]. Lancet Respir Med, 2021, 9(3): 285-294.
doi: 10.1016/S2213-2600(20)30364-7 pmid: 33197388 |
[9] |
Zhang D, Newton CA, Wang B, et al. Utility of whole genome sequencing in assessing risk and clinically relevant outcomes for pulmonary fibrosis[J]. Eur Respir J, 2022, 60(6): 2200577.
doi: 10.1183/13993003.00577-2022 URL |
[10] |
Lee EY, Lin J, Noth EM, et al. Traffic-related air pollution and telomere length in children and adolescents living in Fresno, CA: A pilot study[J]. J Occup Environ Med, 2017, 59(5): 446-452.
doi: 10.1097/JOM.0000000000000996 pmid: 28486341 |
[11] |
Doherty JA, Grieshober L, Houck JR, et al. Telomere length and lung cancer mortality among heavy smokers[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(7): 829-837.
doi: 10.1158/1055-9965.EPI-17-1183 URL |
[12] |
Liu B, He Y, Wang Y, et al. Structure of active human telomerase with telomere shelterin protein TPP1[J]. Nature, 2022, 604(7906): 578-583.
doi: 10.1038/s41586-022-04582-8 |
[13] |
Hirata M, Fujita K, Fujihara S, et al. Telomerase reverse transcriptase promoter mutations in human hepatobiliary, pancreatic and gastrointestinal cancer cell lines[J]. In Vivo, 2022, 36(1): 94-102.
doi: 10.21873/invivo.12680 pmid: 34972704 |
[14] |
Houssaini A, Breau M, Kebe K, et al. mTOR pathway activation drives lung cell senescence and emphysema[J]. JCI Insight, 2018, 3(3): e93203.
doi: 10.1172/jci.insight.93203 URL |
[15] |
Yao C, Guan X, Carraro G, et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2021, 203(6): 707-717.
doi: 10.1164/rccm.202004-1274OC URL |
[16] |
Rashid K, Sundar IK, Gerloff J, et al. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema[J]. Sci Rep, 2018, 8(1): 9023.
doi: 10.1038/s41598-018-27209-3 pmid: 29899396 |
[17] |
Wan ES, Goldstein RL, Fan VS, et al. Telomere length in COPD: Relationships with physical activity, exercise capacity, and acute exacerbations[J]. PLoS One, 2019, 14(10): e0223891.
doi: 10.1371/journal.pone.0223891 URL |
[18] |
Kuznar-Kaminska B, Mikula-Pietrasik J, Witucka A, et al. Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells[J]. Sci Rep, 2018, 8(1): 12940.
doi: 10.1038/s41598-018-31037-w |
[19] |
Wang T, Jia Z, Li S, et al. The association between leukocyte telomere length and chronic obstructive pulmonary disease is partially mediated by inflammation: A meta-analysis and population-based mediation study[J]. BMC Pulm Med, 2022, 22(1): 320.
doi: 10.1186/s12890-022-02114-8 pmid: 35987624 |
[20] |
Liu B, Maekawa T, Yoshida K, et al. Telomere shortening by transgenerational transmission of TNF-alpha-induced TERRA via ATF7[J]. Nucleic Acids Res, 2019, 47(1): 283-298.
doi: 10.1093/nar/gky1149 URL |
[21] |
Logozzi M, Mizzoni D, Di Raimo R, et al. Oral administration of fermented papaya (FPP((R))) controls the growth of a murine melanoma through the in vivo induction of a natural antioxidant response[J]. Cancers (Basel), 2019, 11(1): 118.
doi: 10.3390/cancers11010118 URL |
[22] |
Cordoba-Lanus E, Cazorla-Rivero S, Garcia-Bello MA, et al. Telomere length dynamics over 10-years and related outcomes in patients with COPD[J]. Respir Res, 2021, 22(1): 56.
doi: 10.1186/s12931-021-01616-z |
[23] |
Savale L, Chaouat A, Bastuji-Garin S, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2009, 179(7): 566-571.
doi: 10.1164/rccm.200809-1398OC URL |
[24] |
Saferali A, Lee J, Sin DD, et al. Longer telomere length in COPD patients with alpha1-antitrypsin deficiency independent of lung function[J]. PLoS One, 2014, 9(4): e95600.
doi: 10.1371/journal.pone.0095600 URL |
[25] |
Ahmad T, Sundar IK, Tormos AM, et al. Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via sirtuin 1 deacetylase in chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2017, 56(1): 38-49.
doi: 10.1165/rcmb.2016-0198OC URL |
[26] |
Hernandez Cordero AI, Yang CX, Li X, et al. Epigenetic marker of telomeric age is associated with exacerbations and hospitalizations in chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1): 316.
doi: 10.1186/s12931-021-01911-9 |
[27] | Casas-Recasens S, Mendoza N, Lopez-Giraldo A, et al. Telomere length but not mitochondrial DNA copy number is altered in both young and old COPD[J]. Front Med (Lausanne), 2021, 8: 761767. |
[28] |
Rode L, Bojesen SE, Weischer M, et al. Short telomere length, lung function and chronic obstructive pulmonary disease in 46, 396 individuals[J]. Thorax, 2013, 68(5): 429-435.
doi: 10.1136/thoraxjnl-2012-202544 URL |
[29] |
Andujar P, Courbon D, Bizard E, et al. Smoking, telomere length and lung function decline: A longitudinal population-based study[J]. Thorax, 2018, 73(3): 283-285.
doi: 10.1136/thoraxjnl-2017-210294 pmid: 28724638 |
[30] |
Moon DH, Kim J, Lim MN, et al. Correlation between telomere length and chronic obstructive pulmonary disease-related phenotypes: Results from the chronic obstructive pulmonary disease in Dusty Areas (CODA) Cohort[J]. Tuberc Respir Dis (Seoul), 2021, 84(3): 188-199.
doi: 10.4046/trd.2021.0015 URL |
[31] |
Yildirim H, Yildiz P, Coskunpinar E. Investigation of telomere related gene mutations in idiopathic pulmonary fibrosis[J]. Mol Biol Rep, 2020, 47(10): 7851-7860.
doi: 10.1007/s11033-020-05861-1 |
[32] |
Alder JK, Guo N, Kembou F, et al. Telomere length is a determinant of emphysema susceptibility[J]. Am J Respir Crit Care Med, 2011, 184(8): 904-912.
doi: 10.1164/rccm.201103-0520OC URL |
[33] |
Stanley SE, Chen JJ, Podlevsky JD, et al. Telomerase mutations in smokers with severe emphysema[J]. J Clin Invest, 2015, 125(2): 563-570.
doi: 10.1172/JCI78554 pmid: 25562321 |
[34] |
Chen R, Zhang K, Chen H, et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs[J]. J Biol Chem, 2015, 290(52): 30813-30829.
doi: 10.1074/jbc.M115.681619 pmid: 26518879 |
[35] | Guzman-Vargas J, Ambrocio-Ortiz E, Perez-Rubio G, et al. Differential genomic profile in TERT, DSP, and FAM13A between COPD patients with emphysema, IPF, and CPFE syndrome[J]. Front Med (Lausanne), 2021, 8: 725144. |
[36] |
Ding Y, Li Q, Wu C, et al. TERT gene polymorphisms are associated with chronic obstructive pulmonary disease risk in the Chinese Li population[J]. Mol Genet Genomic Med, 2019, 7(8): e773.
doi: 10.1002/mgg3.v7.8 URL |
[37] |
Arimura-Omori M, Kiyohara C, Yanagihara T, et al. Association between telomere-related polymorphisms and the risk of IPF and COPD as a precursor lesion of lung cancer: Findings from the Fukuoka Tobacco-Related Lung Disease (FOLD) Registry[J]. Asian Pac J Cancer Prev, 2020, 21(3): 667-673.
doi: 10.31557/APJCP.2020.21.3.667 URL |
[38] |
Xu J, de Oliveira DM, Trudeau MA, et al. Mild catalytic defects of tert rs61748181 polymorphism affect the clinical presentation of chronic obstructive pulmonary disease[J]. Sci Rep, 2021, 11(1): 4333.
doi: 10.1038/s41598-021-83686-z pmid: 33619289 |
[39] |
Kinjo T, Kitaguchi Y, Droma Y, et al. The Gly82Ser mutation in AGER contributes to pathogenesis of pulmonary fibrosis in combined pulmonary fibrosis and emphysema (CPFE) in Japanese patients[J]. Sci Rep, 2020, 10(1): 12811.
doi: 10.1038/s41598-020-69184-8 pmid: 32732977 |
[1] | . [J]. Clinical Focus, 2024, 39(2): 188-192. |
[2] | . [J]. Clinical Focus, 2022, 37(11): 1048-1052. |
[3] | Sun Ying, Yu Qin. Long-term effect of hypoglossal nerve stimulation in the treatment of obstructive sleep apnea hypopnea syndrome: A meta analysis [J]. Clinical Focus, 2022, 37(8): 677-684. |
[4] | Wang Xuefeng. Clinical correlation between fatigue and multi-dimensional indexes in patients with stable moderate chronic obstructive pulmonary disease [J]. Clinical Focus, 2022, 37(8): 704-707. |
[5] | Zhang Zhiping, Zhang Baomin, Qin Wei, Gao Lingjie, Chen Dong. Clinical application of nutritional support on mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease [J]. Clinical Focus, 2022, 37(6): 510-514. |
[6] | . [J]. Clinical Focus, 2021, 36(9): 861-864. |
[7] | Fu Qun, Guo Di, Zhao Wenfei. VEGF, ICAM-1, IL-13, FeNO level of induced sputum on asthma, asthma-copd overlap, and chronic obstructive pulmonary disease in patients: clinical changes and significance [J]. Clinical Focus, 2021, 36(6): 513-516. |
[8] | Zhang Qinxia, a, Zhang Haifu, b, Lyu Quna. Efficacy and safety of ticagrelor in coronary artery disease and chronic obstructive pulmonary disease: a metaanalysis [J]. Clinical Focus, 2020, 35(11): 965-970. |
[9] | . [J]. Clinical Focus, 2016, 31(3): 345-348. |
[10] | Lu Qiuxia;Chen Xi;Wu Xiao;Hu Shanyou;Wang Li. Plasma N-terminal B-type natriuretic peptide in acute exacerbation of chronic obstructive pulmonary disease patients and prognosis [J]. Clinical Focus, 2015, 30(11): 1265-1268. |
[11] | . [J]. Clinical Focus, 2015, 30(9): 1063-1066. |
[12] | . @@ [J]. Clinical Focus, 2015, 30(8): 956-960. |
[13] | Zhang Zhen;Jia Shiqiang;Peng Zhanxian;Zong Wei;Wen Shiwei;Sun Luhua;Rong Xuebing;Wang Jingjun;Dong Shimin. Clinical value of rapid shallow breathing index in predicting ventilator weaning in sleeping patients with acute exacerbation chronic obstructive pulmonary disease [J]. Clinical Focus, 2015, 30(5): 506-508509. |
[14] | . [J]. Clinical Focus, 2015, 30(5): 564-566. |
[15] | Hu Shanshan;Zhang Shun;Cai Ting. Immunochemotherapy for advanced non-small cell lung cancer:a meta-analysis [J]. Clinical Focus, 2015, 30(3): 283-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||