Clinical Focus ›› 2021, Vol. 36 ›› Issue (9): 790-794.doi: 10.3969/j.issn.1004-583X.2021.09.005
Previous Articles Next Articles
Zhao Wei, Luo Lan, Li Shen, Dong Yingying, Li Xinyu, Gao Zhengnan()
Received:
2021-06-22
Online:
2021-09-20
Published:
2021-10-05
Contact:
Gao Zhengnan
E-mail:gao2008@medmail.com.cn
CLC Number:
Zhao Wei, Luo Lan, Li Shen, Dong Yingying, Li Xinyu, Gao Zhengnan. TG/HDL-C, TyG and non-HDL-C in predition of metabolic syndrome incidence in middle-aged and elderly women[J]. Clinical Focus, 2021, 36(9): 790-794.
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.09.005
项目 | 基线 | 随访 | 统计值 | P值 |
---|---|---|---|---|
年龄(岁) | 55.08±7.18 | 58.67±7.22 | t=16.174 | <0.01 |
吸烟[例(%)] | 38(1.81) | 23(1.10) | χ2=3.743 | 0.053 |
饮酒[例(%)] | 310(14.78) | 201(9.58) | χ2=26.475 | <0.01 |
BMI(kg/m2) | 24.48±3.37 | 24.25±3.47 | t=2.133 | 0.033 |
腰围(cm) | 85.12±9.26 | 84.33±8.92 | t=2.820 | 0.005 |
收缩压(mmHg) | 132.69±19.31 | 123.43±17.78 | t=16.167 | <0.01 |
舒张压(mmHg) | 76.75±11.10 | 73.21±9.78 | t=10.957 | <0.01 |
FPG(mmol/L) | 5.39(5.12,5.70) | 5.21(4.98,5.54) | Z=11.390 | <0.01 |
2 hPG(mmol/L) | 6.38(5.60,7.23) | 6.41(5.50,7.46) | Z=0.606 | 0.544 |
TC(mmol/L) | 5.44(4.83,6.12) | 5.50(4.87,6.12) | Z=1.241 | 0.215 |
TG(mmol/L) | 1.04(0.80,1.37) | 1.26(0.94,1.69) | Z=14.738 | <0.01 |
HDL-C(mmol/L) | 1.51(1.32,1.72) | 1.36(1.19,1.55) | Z=15.810 | <0.01 |
LDL-C(mmol/L) | 3.23(2.73,3.79) | 3.24(2.74,3.76) | Z=0.304 | 0.761 |
TG/HDL-C | 0.69(0.49,0.96) | 0.92(0.64,1.34) | Z=17.521 | <0.01 |
TyG指数 | 8.41(8.13,8.69) | 8.56(8.26,8.88) | Z=11.381 | <0.01 |
non-HDL-C | 3.91(3.33,4.56) | 4.08(3.51,4.72) | Z=6.414 | <0.01 |
项目 | 基线 | 随访 | 统计值 | P值 |
---|---|---|---|---|
年龄(岁) | 55.08±7.18 | 58.67±7.22 | t=16.174 | <0.01 |
吸烟[例(%)] | 38(1.81) | 23(1.10) | χ2=3.743 | 0.053 |
饮酒[例(%)] | 310(14.78) | 201(9.58) | χ2=26.475 | <0.01 |
BMI(kg/m2) | 24.48±3.37 | 24.25±3.47 | t=2.133 | 0.033 |
腰围(cm) | 85.12±9.26 | 84.33±8.92 | t=2.820 | 0.005 |
收缩压(mmHg) | 132.69±19.31 | 123.43±17.78 | t=16.167 | <0.01 |
舒张压(mmHg) | 76.75±11.10 | 73.21±9.78 | t=10.957 | <0.01 |
FPG(mmol/L) | 5.39(5.12,5.70) | 5.21(4.98,5.54) | Z=11.390 | <0.01 |
2 hPG(mmol/L) | 6.38(5.60,7.23) | 6.41(5.50,7.46) | Z=0.606 | 0.544 |
TC(mmol/L) | 5.44(4.83,6.12) | 5.50(4.87,6.12) | Z=1.241 | 0.215 |
TG(mmol/L) | 1.04(0.80,1.37) | 1.26(0.94,1.69) | Z=14.738 | <0.01 |
HDL-C(mmol/L) | 1.51(1.32,1.72) | 1.36(1.19,1.55) | Z=15.810 | <0.01 |
LDL-C(mmol/L) | 3.23(2.73,3.79) | 3.24(2.74,3.76) | Z=0.304 | 0.761 |
TG/HDL-C | 0.69(0.49,0.96) | 0.92(0.64,1.34) | Z=17.521 | <0.01 |
TyG指数 | 8.41(8.13,8.69) | 8.56(8.26,8.88) | Z=11.381 | <0.01 |
non-HDL-C | 3.91(3.33,4.56) | 4.08(3.51,4.72) | Z=6.414 | <0.01 |
因素 | 例数 | MS | χ2值 | P值 |
---|---|---|---|---|
年龄 | ||||
40岁~ | 486 | 64(13.17)* | ||
50岁~ | 1 199 | 207(17.26)* | 103.783 | <0.01 |
60岁~ | 326 | 65(19.94)* | ||
70岁~ | 87 | 27(31.03) | ||
月经 | ||||
未绝经 绝经 | 556 1 542 | 81(14.57) 282(18.29) | 3.951 | 0.047 |
糖尿病家族史 | ||||
有 无 | 473 1 625 | 81(17.12) 282(17.35) | 0.013 | 0.908 |
吸烟史 | ||||
有 无 | 38 2 060 | 5(13.16) 358(17.38) | 0.465 | 0.496 |
饮酒史 | ||||
有 无 | 312 1 786 | 57(18.27) 306(17.13) | 0.240 | 0.625 |
因素 | 例数 | MS | χ2值 | P值 |
---|---|---|---|---|
年龄 | ||||
40岁~ | 486 | 64(13.17)* | ||
50岁~ | 1 199 | 207(17.26)* | 103.783 | <0.01 |
60岁~ | 326 | 65(19.94)* | ||
70岁~ | 87 | 27(31.03) | ||
月经 | ||||
未绝经 绝经 | 556 1 542 | 81(14.57) 282(18.29) | 3.951 | 0.047 |
糖尿病家族史 | ||||
有 无 | 473 1 625 | 81(17.12) 282(17.35) | 0.013 | 0.908 |
吸烟史 | ||||
有 无 | 38 2 060 | 5(13.16) 358(17.38) | 0.465 | 0.496 |
饮酒史 | ||||
有 无 | 312 1 786 | 57(18.27) 306(17.13) | 0.240 | 0.625 |
组别 | 例数 | MS | |
---|---|---|---|
T1 | 525 | 23(4.38) | |
T2 | 525 | 58(11.05)* | |
T3 | 524 | 102(19.47)*# | |
T4 | 524 | 180(34.35)*#△ | |
χ2值 | 183.774 | ||
P值 | <0.01 |
组别 | 例数 | MS | |
---|---|---|---|
T1 | 525 | 23(4.38) | |
T2 | 525 | 58(11.05)* | |
T3 | 524 | 102(19.47)*# | |
T4 | 524 | 180(34.35)*#△ | |
χ2值 | 183.774 | ||
P值 | <0.01 |
组别 | 例数 | MS |
---|---|---|
G1 | 525 | 33(6.29) |
G2 | 524 | 58(11.07)* |
G3 | 525 | 95(18.10)*# |
G4 | 524 | 177(33.78)*#△ |
χ2值 | 158.408 | |
P值 | <0.01 |
组别 | 例数 | MS |
---|---|---|
G1 | 525 | 33(6.29) |
G2 | 524 | 58(11.07)* |
G3 | 525 | 95(18.10)*# |
G4 | 524 | 177(33.78)*#△ |
χ2值 | 158.408 | |
P值 | <0.01 |
组别 | 例数 | MS |
---|---|---|
N1 | 529 | 56(10.59) |
N2 | 527 | 78(14.80) |
N3 | 520 | 100(19.23)* |
N4 | 522 | 129(24.71)*# |
χ2值 | 40.367 | |
P值 | <0.01 |
组别 | 例数 | MS |
---|---|---|
N1 | 529 | 56(10.59) |
N2 | 527 | 78(14.80) |
N3 | 520 | 100(19.23)* |
N4 | 522 | 129(24.71)*# |
χ2值 | 40.367 | |
P值 | <0.01 |
因素 | 回归 系数 | 标准误 | Wald χ2值 | P值 | OR值 | 95%CI | |
---|---|---|---|---|---|---|---|
下限 | 上限 | ||||||
TG/HDL-C | 0.832 | 0.118 | 49.379 | <0.01 | 2.297 | 1.822 | 2.897 |
TyG指数 | 1.215 | 0.149 | 66.170 | <0.01 | 3.370 | 2.515 | 4.516 |
non-HDL-C | 0.442 | 0.066 | 44.834 | <0.01 | 1.555 | 1.367 | 1.770 |
因素 | 回归 系数 | 标准误 | Wald χ2值 | P值 | OR值 | 95%CI | |
---|---|---|---|---|---|---|---|
下限 | 上限 | ||||||
TG/HDL-C | 0.832 | 0.118 | 49.379 | <0.01 | 2.297 | 1.822 | 2.897 |
TyG指数 | 1.215 | 0.149 | 66.170 | <0.01 | 3.370 | 2.515 | 4.516 |
non-HDL-C | 0.442 | 0.066 | 44.834 | <0.01 | 1.555 | 1.367 | 1.770 |
[1] |
Capomolla AS, Janda E, Paone S, et al. Atherogenic index reduction and weight loss in metabolic syndrome patients treated with a novel pectin-enriched formulation of bergamot polyphenols[J]. Nutrients, 2019, 11(6):1271.
doi: 10.3390/nu11061271 URL |
[2] |
Stefanska A, Bergmann K, Sypniewska G. Metabolic syndrome and menopause: Pathophysiology, clinical and diagnostic significance[J]. Adv Clin Chem, 2015, 72:1-75.
doi: 10.1016/bs.acc.2015.07.001 pmid: 26471080 |
[3] | 郑卉, 程阳, 尹冬华, 等. 非高密度脂蛋白胆固醇和三酰甘油葡萄糖乘积指数及三酰甘油高密度脂蛋白胆固醇比值评估代谢综合征的价值研究[J]. 中国全科医学, 2021, 24(3):322-326+332. |
[4] | 黄春芬, 季伟峰, 叶永玲, 等. DM2患者非高密度脂蛋白胆固醇与胰岛素抵抗的相关性分析[J]. 放射免疫学杂志, 2013, 26(2):226-227. |
[5] |
Vasques AC, Novaes FS, de Oliveira Mda S, et al. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study[J]. Diabetes Res Clin Pract, 2011, 93(3):e98-e100.
doi: 10.1016/j.diabres.2011.05.030 URL |
[6] | 朱新玉, 白亚娜, 穆红娣, 等. 金昌队列人群代谢综合征发病状况研究[J]. 兰州大学学报:医学版, 2015, 41(6):34-38. |
[7] | 王晓妍, 李红, 时立新, 等. 贵阳市城区40岁以上人群睡眠时间、看电视时间与代谢综合征发病关系的前瞻性队列研究[J]. 中华内分泌代谢杂志, 2016, 32(6):488-493. |
[8] | 胰岛素抵抗评估方法和应用的专家指导意见[J]. 中华糖尿病杂志, 2018, 10(6):377-385. |
[9] |
Lin D, Qi Y, Huang C, et al. Associations of lipid parameters with insulin resistance and diabetes: A population-based study[J]. Clin Nutr, 2018, 37(4):1423-1429.
doi: 10.1016/j.clnu.2017.06.018 URL |
[10] |
Zhou L, Mai J, Li Y, et al. Triglyceride to high-density lipoprotein cholesterol ratio and risk of atherosclerotic cardiovascular disease in a Chinese population[J]. Nutr Metab Cardiovasc Dis, 2020, 30(10):1706-1713.
doi: 10.1016/j.numecd.2020.05.009 URL |
[11] |
Luo Y, Chen J, Yan XL, et al. Association of non-traditional lipid parameters with hemorrhagic transformation and clinical outcome after thrombolysis in ischemic stroke patients[J]. Curr Neurovasc Res, 2020, 17(5):736-744.
doi: 10.2174/1567202617999210101223129 URL |
[12] | Liu H, Yan S, Chen G, et al. Association of the ratio of triglycerides to high-density lipoprotein cholesterol levels with the risk of type 2 diabetes: A retrospective cohort study in Beijing[J]. J Diabetes Res, 2021, 2021:5524728. |
[13] |
Gu Z, Zhu P, Wang Q, et al. Obesity and lipid-related parameters for predicting metabolic syndrome in Chinese elderly population[J]. Lipids Health Dis, 2018, 17(1):289.
doi: 10.1186/s12944-018-0927-x URL |
[14] |
Gasevic D, Frohlich J, Mancini GJ, et al. Clinical usefulness of lipid ratios to identify men and women with metabolic syndrome: A cross-sectional study[J]. Lipids Health Dis, 2014, 13:159.
doi: 10.1186/1476-511X-13-159 URL |
[15] |
Rezapour M, Shahesmaeili A, Hossinzadeh A, et al. Comparison of lipid ratios to identify metabolic syndrome[J]. Arch Iran Med, 2018, 21(12):572-577.
pmid: 30634854 |
[16] |
Raimi TH, Dele-Ojo BF, Dada SA, et al. Triglyceride-glucose index and related parameters predicted metabolic syndrome in Nigerians[J]. Metab Syndr Relat Disord, 2021, 19(2):76-82.
doi: 10.1089/met.2020.0092 URL |
[17] |
Lee SH, Han K, Yang HK, et al. A novel criterion for identifying metabolically obese but normal weight individuals using the product of triglycerides and glucose[J]. Nutr Diabetes, 2015, 5(4):e149.
doi: 10.1038/nutd.2014.46 URL |
[18] |
Bintoro BS, Fan YC, Chou CC, et al. Metabolic unhealthiness increases the likelihood of having metabolic syndrome components in normoweight young adults[J]. Int J Environ Res Public Health, 2019, 16(18):3258.
doi: 10.3390/ijerph16183258 URL |
[19] | Khan SH, Asif N, Ijaz A, et al. Status of non-HDL-cholesterol and LDL-cholesterol among subjects with and without metabolic syndrome[J]. J Pak Med Assoc, 2018, 68(4):554-558. |
[20] |
Liu A, Reaven GM. Is measurement of non-HDL cholesterol an effective way to identify the metabolic syndrome?[J]. Nutr Metab Cardiovasc Dis, 2013, 23(11):1122-1127.
doi: 10.1016/j.numecd.2012.12.001 pmid: 23352957 |
[21] |
Wang S, Tu J, Pan Y. Threshold effects in the relationship between serum non-high-density lipoprotein cholesterol and metabolic syndrome[J]. Diabetes Metab Syndr Obes, 2019, 12:2501-2506.
doi: 10.2147/DMSO URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||