Clinical Focus ›› 2021, Vol. 36 ›› Issue (3): 281-284.doi: 10.3969/j.issn.1004-583X.2021.03.019
Previous Articles Next Articles
Received:
2020-09-09
Online:
2021-03-20
Published:
2021-03-29
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.03.019
[1] |
Allanore Y, Distler O, Matucci-Cerinic M, et al. Review: Defining a unified vascular phenotype in systemic sclerosis[J]. Arthritis Rheumatol, 2018,70(2):162-170.
doi: 10.1002/art.40377 URL |
[2] |
Di Benedetto P, Ruscitti P, Liakouli V, et al. The vessels contribute to fibrosis in systemic sclerosis[J]. Isr Med Assoc J, 2019,21(7):471-474.
pmid: 31507123 |
[3] |
Zhang Y, Shen L, Zhu H, et al. PGC-1α regulates autophagy to promote fibroblast activation and tissue fibrosis[J]. Ann Rheum Dis, 2020,79(9):1227-1233.
doi: 10.1136/annrheumdis-2020-216963 URL |
[4] |
Didier K, Giusti D, Le Jan S, et al. Neutrophil extracellular traps generation relates with early stage and vascular complications in systemic sclerosis[J]. J Clin Med, 2020,9(7):2136.
doi: 10.3390/jcm9072136 URL |
[5] | Leffler J, Stojanovich L, Shoenfeld Y, et al. Degradation of neutrophil extracellular traps is decreased in patients with antiphospholipid syndrome[J]. Clin Exp Rheumatol, 2014,32(1):66-70. |
[6] |
Chrysanthopoulou A, Mitroulis I, Apostolidou E, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts[J]. J Pathol, 2014,233(3):294-307.
doi: 10.1002/path.4359 URL |
[7] |
Takahashi T, Asano Y, Amiya E, et al. Clinical correlation of brachial artery flow-mediated dilation in patients with systemic sclerosis[J]. Modern Rheumatol, 2014,24(1):106-111.
doi: 10.3109/14397595.2013.854064 URL |
[8] |
Aïssou L, Meune C, Avouac J, et al. Small, medium but not large arteries are involved in digital ulcers associated with systemic sclerosis[J]. Joint Bone Spine, 2016,83(4):444-447.
doi: 10.1016/j.jbspin.2015.09.003 pmid: 26750764 |
[9] |
Soulaidopoulos S, Pagkopoulou E, Katsiki N, et al. Arterial stiffness correlates with progressive nailfold capillary microscopic changes in systemic sclerosis: results from a cross-sectional study[J]. Arthritis Res Ther, 2019,21(1):253.
doi: 10.1186/s13075-019-2051-3 URL |
[10] |
Bieber A, Dolnikov K, Chizik V, et al. Microangiopathy and forearm arterial blood flow in systemic sclerosis: a controlled study[J]. Clin Rheumatol, 2020,39(9):2671-2676.
doi: 10.1007/s10067-020-05025-3 URL |
[11] | Domsic RT, Dezfulian C, Shoushtari A, et al. Endothelial dysfunction is present only in the microvasculature and microcirculation of early diffuse systemic sclerosis patients[J]. Clin Exp Rheumatol, 2014, 32(6 Suppl 86):S-154-160. |
[12] |
Hashimoto T, Satoh T, Yokozeki H. Toe gangrene associated with macroangiopathy in systemic sclerosis: a case series on the unreliability of the ankle-brachial pressure index[J]. Acta Derm Venereol, 2018,98(5):532-533.
doi: 10.2340/00015555-2897 URL |
[13] |
Sulli A, Secchi M E, Pizzorni C, et al. Scoring the nailfold microvascular changes during the capillaroscopic analysis in systemic sclerosis patients[J]. Ann Rheum Dis, 2008,67(6):885-887.
doi: 10.1136/ard.2007.079756 URL |
[14] |
Sulli A, Paolino S, Pizzorni C, et al. Progression of nailfold capillaroscopic patterns and correlation with organ involvement in systemic sclerosis: A 12 year study[J]. Rheumatology (Oxford), 2020,59(5):1051-1058.
doi: 10.1093/rheumatology/kez374 pmid: 31750929 |
[15] |
Ruaro B, Pizzorni C, Paolino S, et al. Correlations between nailfold microvascular damage and skin involvement in systemic sclerosis patients[J]. Microvasc Res, 2019,125:103874.
doi: 10.1016/j.mvr.2019.04.004 URL |
[16] |
Avouac J, Lepri G, Smith V, et al. Sequential nailfold videocapillaroscopy examinations have responsiveness to detect organ progression in systemic sclerosis[J]. Semin Arthritis Rheum, 2017,47(1):86-94.
doi: 10.1016/j.semarthrit.2017.02.006 URL |
[17] |
Pavan TR, Bredemeier M, Hax V, et al. Capillary loss on nailfold capillary microscopy is associated with mortality in systemic sclerosis[J]. Clin Rheumatol, 2018,37(2):475-481.
doi: 10.1007/s10067-017-3869-1 URL |
[18] |
Caetano J, Paula FS, Amaral M, et al. Nailfold videocapillaroscopy changes are associated with the presence and severity of systemic sclerosis-related interstitial lung disease[J]. J Clin Rheumatol, 2019,25(3):e12-e15.
doi: 10.1097/RHU.0000000000000815 pmid: WOS:000463385200003 |
[19] |
Dinsdale G, Moore T, O'Leary N, et al. Quantitative outcome measures for systemic sclerosis-related microangiopathy - reliability of image acquisition in nailfold capillaroscopy[J]. Microvasc Res, 2017,113:56-59.
doi: 10.1016/j.mvr.2017.05.003 URL |
[20] |
Mihai C, Smith V, Dobrota R, et al. The emerging application of semi-quantitative and quantitative capillaroscopy in systemic sclerosis[J]. Microvasc Res, 2018,118:113-120.
doi: 10.1016/j.mvr.2018.03.004 URL |
[21] |
Berks M, Dinsdale G, Murray A, et al. Automated structure and flow measurement - a promising tool in nailfold capillaroscopy[J]. Microvasc Res, 2018,118:173-177.
doi: 10.1016/j.mvr.2018.03.016 URL |
[22] |
Bulkley BH, Ridolfi RL, Salyer WR, et al. Myocardial lesions of progressive systemic sclerosis. A cause of cardiac dysfunction[J]. Circulation, 1976,53(3):483-490.
pmid: 1248080 |
[23] |
Mizuno R, Fujimoto S, Saito Y, et al. Cardiac Raynaud's phenomenon induced by cold provocation as a predictor of long-term left ventricular dysfunction and remodelling in systemic sclerosis: 7-year follow-up study[J]. Eur J Heart Fail, 2010,12(3):268-275.
doi: 10.1093/eurjhf/hfp198 URL |
[24] |
Rodriguez-Reyna TS, Morelos-Guzman M, Hernandez-Reyes P, et al. Assessment of myocardial fibrosis and microvascular damage in systemic sclerosis by magnetic resonance imaging and coronary angiotomography[J]. Rheumatology (Oxford), 2015,54(4):647-654.
doi: 10.1093/rheumatology/keu350 URL |
[25] |
Colaci M, Giuggioli D, Spinella A, et al. Established coronary artery disease in systemic sclerosis compared to type 2 diabetic female patients: A cross-sectional study[J]. Clin Rheumatol, 2019,38(6):1637-1642.
doi: 10.1007/s10067-019-04427-2 URL |
[26] | Colaci M, Dal Bosco Y, Schinocca C, et al. Aortic root dilation in associated with the reduction in capillary density observed at nailfold capillaroscopy in SSc patients[J]. Clin Rheumatol, 2020, Jun 6. [Online ahead of print] |
[27] |
Zanatta E, Famoso G, Boscain F, et al. Nailfold avascular score and coronary microvascular dysfunction in systemic sclerosis: A newsworthy association[J]. Autoimmun Rev, 2019,18(2):177-183.
doi: 10.1016/j.autrev.2018.09.002 URL |
[28] |
Faccini A, Agricola E, Oppizzi M, et al. Coronary microvascular dysfunction in asymptomatic patients affected by systemic sclerosis-limited vs. diffuse form[J]. Circ J, 2015,79(4):825-829.
doi: 10.1253/circj.CJ-14-1114 URL |
[29] | Condliffe R, Howard LS. Connective tissue disease-associated pulmonary arterial hypertension[J]. F1000Prime Rep, 2015,7:6. |
[30] | Yamakawa H, Takemura T, Iwasawa T, et al. Emphysematous change with scleroderma-associated interstitial lung disease: the potential contribution of vasculopathy?[J]. BMC Pulm Medi, 2018,18(1):25. |
[31] |
Champtiaux N, Cottin V, Chassagnon G, et al. Combined pulmonary fibrosis and emphysema in systemic sclerosis: A syndrome associated with heavy morbidity and mortality[J]. Semin Arthritis Rheum, 2019,49(1):98-104.
doi: 10.1016/j.semarthrit.2018.10.011 URL |
[32] |
Gigante A, Romaniello A, Magrì D, et al. Correlation between intrarenal arterial stiffness and exercise tolerance in systemic sclerosis patients without renal and cardiopulmonary impairment: the role of the microvascular damage[J]. Int J Cardiol, 2015,185:122-124.
doi: 10.1016/j.ijcard.2015.03.089 URL |
[33] |
Zhai Z, Staring M, Ninaber MK, et al. Pulmonary vascular morphology associated with gas exchange in systemic sclerosis without lung fibrosis[J]. J Thorac Imaging, 2019,34(6):373-379.
doi: 10.1097/RTI.0000000000000395 URL |
[34] |
Yamashita H, Kamei R, Kaneko H. Classifications of scleroderma renal crisis and reconsideration of its pathophysiology[J]. Rheumatology (Oxford), 2019,58(12):2099-2106.
doi: 10.1093/rheumatology/kez435 pmid: 31566243 |
[35] | Gigante A, Barbano B, Gasperini ML, et al. Renal parenchymal thickness in patients with systemic sclerosis is related to intrarenal hemodynamic variables and raynaud renal phenomenon[J]. J Rheumatol, 2020,47(4):567-571. |
[36] | Gigante A, Bruni C, Lepri G, et al. The renal resistive index: a new biomarker for the follow up of vascular modifications in systemic sclerosis[J]. J Rheumatol, 2020, April 1;jrheum.191101 [Online ahead of print] |
[37] |
Bruni C, Rosato E, Maestripieri V, et al. The renal resistive index in systemic sclerosis: determinants, prognostic implication and proposal for specific age-adjusted cut-offs[J]. Eur J Intern Med, 2019,70:43-49.
doi: 10.1016/j.ejim.2019.09.001 URL |
[38] |
Lescoat A, Yelnik CM, Coiffier G, et al. Ulnar artery occlusion and severity markers of vasculopathy in systemic sclerosis: a multicenter cross-sectional study[J]. Arthritis Rheumatol, 2019,71(6):983-990.
doi: 10.1002/art.40799 pmid: WOS:000470986800018 |
[39] |
Rosato E, Barbano B, Gigante A, et al. Doppler ultrasound study of penis in men with systemic sclerosis: A correlation with Doppler indices of renal and digital arteries[J]. Int J Immunopathol Pharmacol, 2013,26(4):1007-1011.
pmid: 24355239 |
[40] |
Motegi SI, Sekiguchi A, Yonemoto Y, et al. Demographic and clinical characteristics of spinal calcinosis in systemic sclerosis: Possible association with peripheral angiopathy[J]. J Dermatol, 2019,46(1):33-36.
doi: 10.1111/jde.2019.46.issue-1 URL |
[1] | Song Jialiang, Jiang Yingjie, Kong Ruina, Cai Qing, Gao Jie. IgG4-related diseases characterized by increased IgE level and eosinophil count with multiple lymphadenopathy: A case report [J]. Clinical Focus, 2024, 39(1): 57-60. |
[2] | . [J]. Clinical Focus, 2024, 39(1): 92-96. |
[3] | He Peihua, Zhou Xingfu, Hong Weihong, Wang Lichun, Liu Sujun, Jin Yuyan, Zeng Jiahao, Liu Lichang. Clinical analysis of 4 cases of IgG4-related kidney disease [J]. Clinical Focus, 2023, 38(11): 1016-1021. |
[4] | . [J]. Clinical Focus, 2023, 38(10): 944-948. |
[5] | . [J]. Clinical Focus, 2023, 38(8): 753-756. |
[6] | . [J]. Clinical Focus, 2023, 38(7): 663-667. |
[7] | . [J]. Clinical Focus, 2023, 38(3): 279-284. |
[8] | Gao Ying, Han Zhongli, Wang Hongyan, Li Xiaofu. Magnetic resonance imaging characteristics of Andersson lesions associated with ankylosing spondylitis [J]. Clinical Focus, 2022, 37(10): 927-930. |
[9] | Zhang Yueyue, Xie Meifang, Sun Gen. Rheumatoid arthritis complicated with T-cell large granular lymphocytic leukemia: A case report and literature review [J]. Clinical Focus, 2022, 37(8): 728-732. |
[10] | Lin Changyi, Song Minghui, Wu Peicheng. Effects of diagnosis age on clinical manifestations of polymyalgia rheumatica: A single center retrospective cohort study on 68 patients [J]. Clinical Focus, 2022, 37(7): 612-615. |
[11] | Qin Meijie, Tian Maolu, Yang Yuqi, Zha Yan, Yuan Jing. Literature review on treatment of immune thrombocytopenia secondary to refractory systemic lupus erythematosus with belimumab combined with cyclosporine: A case report and literature review [J]. Clinical Focus, 2022, 37(6): 544-547. |
[12] | . [J]. Clinical Focus, 2022, 37(5): 472-476. |
[13] | Hu Fangfang, Zhong Shiling, Di Yazhen, Wu Ling. Vascular endothelial function of juvenile idiopathic arthritis in pediatric patients: A systematic review and meta-analysis [J]. Clinical Focus, 2022, 37(3): 204-210. |
[14] | Lin Changyi, Song Minghui, Wu Peicheng. Difference between remitting seronegative symmetrical synovitis with pitting edema syndrome and seronegative rheumatoid arthritis [J]. Clinical Focus, 2022, 37(3): 262-265. |
[15] | . [J]. Clinical Focus, 2022, 37(2): 188-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||