Clinical Focus ›› 2023, Vol. 38 ›› Issue (3): 279-284.doi: 10.3969/j.issn.1004-583X.2023.03.016
Previous Articles Next Articles
Received:
2022-10-31
Online:
2023-03-20
Published:
2023-05-11
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.03.016
[1] |
Tanaka Y. Managing osteoporosis and joint damage in patients with rheumatoid arthritis: An overview[J]. J Clin Med, 2021, 10(6):1241.
doi: 10.3390/jcm10061241 URL |
[2] |
Miao CG, Yang YY, He X, et al. Wnt signaling pathway in rheumatoid arthritis, with special emphasis on the different roles in synovial inflammation and bone remodeling[J]. Cell Signal, 2013, 25(10):2069-2078.
doi: 10.1016/j.cellsig.2013.04.002 URL |
[3] |
Cici D, Corrado A, Rotondo C, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis[J]. Int J Mol Sci, 2019, 20(22):5552.
doi: 10.3390/ijms20225552 URL |
[4] |
Zou ML, Chen ZH, Teng YY, et al. The Smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies[J]. Front Mol Biosci, 2021, 8:593310.
doi: 10.3389/fmolb.2021.593310 URL |
[5] |
Bal Z, Kushioka J, Kodama J, et al. BMP and TGFβ use and release in bone regeneration[J]. Turk J Med Sci, 2020, 50(SI-2):1707-1722.
doi: 10.3906/sag-2003-127 URL |
[6] |
Todd GM, Gao Z, Hyvönen M, et al. Secreted BMP antagonists and their role in cancer and bone metastases[J]. Bone, 2020, 137:115455.
doi: 10.1016/j.bone.2020.115455 URL |
[7] |
Kim EH, Suresh M. Role of PI3K/Akt signaling in memory CD8 T cell differentiation[J]. Front Immunol, 2013, 4:20.
doi: 10.3389/fimmu.2013.00020 pmid: 23378844 |
[8] |
Case N, Ma M, Sen B, et al. Beta-catenin levels influence rapid mechanical responses in osteoblasts[J]. J Biol Chem, 2008, 283(43):29196-29205.
doi: 10.1074/jbc.M801907200 pmid: 18723514 |
[9] |
Agas D, Sabbieti MG, Marchetti L, et al. FGF-2 enhances Runx-2/Smads nuclear localization in BMP-2 canonical signaling in osteoblasts[J]. J Cell Physiol, 2013, 228(11):2149-2158.
doi: 10.1002/jcp.24382 pmid: 23559326 |
[10] |
Damerau A, Gaber T, Ohrndorf S, et al. JAK/STAT activation: A general mechanism for bone development, homeostasis, and regeneration[J]. Int J Mol Sci, 2020, 21(23):9004.
doi: 10.3390/ijms21239004 URL |
[11] |
Sims NA. The JAK1/STAT3/SOCS3 axis in bone development, physiology, and pathology[J]. Exp Mol Med, 2020, 52(8):1185-1197.
doi: 10.1038/s12276-020-0445-6 pmid: 32788655 |
[12] |
Wang H, Li L, Zhang N, et al. Vitamin K2 improves osteogenic differentiation by inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 clone 8 cells[J]. Nutrients, 2022, 14(14):2934.
doi: 10.3390/nu14142934 URL |
[13] | Zhou B, Lin W, Long Y, et al. Notch signaling pathway: Architecture, disease, and therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1):95. |
[14] | 吴晶艺, 陆欣辰, 陈广洁. Notch信号通路在类风湿关节炎发病机制中的研究进展[J]. 现代免疫学, 2023, 43(2):144-149. |
[15] |
Sekine C, Koyanagi A, Koyama N, et al. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes[J]. Arthritis Res Ther, 2012, 14(2):R45.
doi: 10.1186/ar3758 URL |
[16] |
Su Y, Xing H, Kang J, et al. Role of the hedgehog signaling pathway in rheumatic diseases: An overview[J]. Front Immunol, 2022, 13:940455.
doi: 10.3389/fimmu.2022.940455 URL |
[17] |
Qin S, Sun D, Li H, et al. The effect of SHH-Gli signaling pathway on the synovial fibroblast proliferation in rheumatoid arthritis[J]. Inflammation, 2016, 39(2):503-512.
doi: 10.1007/s10753-015-0273-3 pmid: 26552406 |
[18] | 王雨荷, 刘红, 李艳, 等. Hedgehog-Gli信号通路在骨质疏松发生中作用的研究进展[J]. 中国骨质疏松杂志, 2021, 27(10):1550-1553. |
[19] |
Yang TL, Shen H, Liu A, et al. A road map for understanding molecular and genetic determinants of osteoporosis[J]. Nat Rev Endocrinol, 2020, 16(2):91-103.
doi: 10.1038/s41574-019-0282-7 |
[20] |
Bellavia D, De Luca A, Carina V, et al. Deregulated miRNAs in bone health: Epigenetic roles in osteoporosis[J]. Bone, 2019, 122:52-75.
doi: S8756-3282(19)30053-5 pmid: 30772601 |
[21] |
Liang B, Burley G, Lin S, et al. Osteoporosis pathogenesis and treatment: Existing and emerging avenues[J]. Cell Mol Biol Lett, 2022, 27(1):72.
doi: 10.1186/s11658-022-00371-3 pmid: 36058940 |
[22] |
Zha L, He L, Liang Y, et al. TNF-α contributes to postmenopausal osteoporosis by synergistically promoting RANKL-induced osteoclast formation[J]. Biomed Pharmacother, 2018, 102:369-374.
doi: S0753-3322(17)36537-X pmid: 29571022 |
[23] |
Zou W, Amcheslavsky A, Takeshita S, et al. TNF-alpha expression is transcriptionally regulated by RANK ligand[J]. J Cell Physiol, 2005, 202(2):371-378.
pmid: 15389596 |
[24] | 颜廷鑫, 王诗军, 姜俊杰, 等. IL-1与骨质疏松研究进展[J]. 中国骨质疏松杂志, 2022, 28(3):460-464. |
[25] |
Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17[J]. Rheumatology (Oxford), 2008, 47(11):1635-1640.
doi: 10.1093/rheumatology/ken363 pmid: 18786965 |
[26] |
Yip RML, Yim CW. Role of interleukin 6 inhibitors in the management of rheumatoid arthritis[J]. J Clin Rheumatol, 2021, 27(8):e516-e524.
doi: 10.1097/RHU.0000000000001293 URL |
[27] |
Catrina A, Krishnamurthy A, Rethi B. Current view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis[J]. RMD Open, 2021, 7(1):e001228.
doi: 10.1136/rmdopen-2020-001228 URL |
[28] |
Hecht C, Englbrecht M, Rech J, et al. Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA[J]. Ann Rheum Dis, 2015, 74(12):2151-2156.
doi: 10.1136/annrheumdis-2014-205428 pmid: 25115448 |
[29] |
Kocijan R, Harre U, Schett G. ACPA and bone loss in rheumatoid arthritis[J]. Curr Rheumatol Rep, 2013, 15(10):366.
doi: 10.1007/s11926-013-0366-7 pmid: 23955066 |
[30] |
Engdahl C, Bang H, Dietel K, et al. Periarticular bone loss in arthritis is induced by autoantibodies against citrullinated vimentin[J]. J Bone Miner Res, 2017, 32(8):1681-1691.
doi: 10.1002/jbmr.3158 pmid: 28425620 |
[31] |
Gatenby P, Lucas R, Swaminathan A. Vitamin D deficiency and risk for rheumatic diseases: An update[J]. Curr Opin Rheumatol, 2013, 25(2):184-191.
doi: 10.1097/BOR.0b013e32835cfc16 pmid: 23370372 |
[32] |
Lee YH, Bae SC. Vitamin D level in rheumatoid arthritis and its correlation with the disease activity: A meta-analysis[J]. Clin Exp Rheumatol, 2016, 34(5):827-833.
pmid: 27049238 |
[33] |
Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia[J]. Clin Geriatr Med, 2017, 33(1):17-26.
doi: S0749-0690(16)30071-4 pmid: 27886695 |
[34] |
Lian L, Wang JX, Xu YC, et al. Sarcopenia may be a risk factor for osteoporosis in Chinese patients with rheumatoid arthritis[J]. Int J Gen Med, 2022, 15:2075-2085.
doi: 10.2147/IJGM.S349435 pmid: 35237070 |
[35] |
Chu YR, Xu SQ, Wang JX, et al. Synergy of sarcopenia and vitamin D deficiency in vertebral osteoporotic fractures in rheumatoid arthritis[J]. Clin Rheumatol, 2022, 41(7):1979-1987.
doi: 10.1007/s10067-022-06125-y |
[36] |
Amiche MA, Abtahi S, Driessen JHM, et al. Impact of cumulative exposure to high-dose oral glucocorticoids on fracture risk in Denmark: A population-based case-control study[J]. Arch Osteoporos, 2018, 13(1):30.
doi: 10.1007/s11657-018-0424-x pmid: 29552730 |
[37] |
Blavnsfeldt AG, de Thurah A, Thomsen MD, et al. The effect of glucocorticoids on bone mineral density in patients with rheumatoid arthritis: A systematic review and meta-analysis of randomized, controlled trials[J]. Bone, 2018, 114:172-180.
doi: 10.1016/j.bone.2018.06.008 URL |
[38] | Guan Y, Hao Y, Guan Y, et al. The effect of vitamin D supplementation on rheumatoid arthritis patients: A systematic review and meta-analysis[J]. Front Med (Lausanne), 2020, 7:596007. |
[39] |
Ma CC, Xu SQ, Gong X, et al. Prevalence and risk factors associated with glucocorticoid-induced osteoporosis in Chinese patients with rheumatoid arthritis[J]. Arch Osteoporos, 2017, 12(1):33.
doi: 10.1007/s11657-017-0329-0 URL |
[40] |
Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis[J]. Arthritis Care Res (Hoboken), 2010, 62(11):1515-15126.
doi: 10.1002/acr.20295 pmid: 20662044 |
[41] |
Kanagawa H, Masuyama R, Morita M, et al. Methotrexate inhibits osteoclastogenesis by decreasing RANKL-induced calcium influx into osteoclast progenitors[J]. J Bone Miner Metab, 2016, 34(5):526-531.
doi: 10.1007/s00774-015-0702-2 pmid: 26202855 |
[42] |
Ruffer N, Krusche M, Beil FT, et al. Clinical features of methotrexate osteopathy in rheumatic musculoskeletal disease: A systematic review[J]. Semin Arthritis Rheum, 2022, 52:151952.
doi: 10.1016/j.semarthrit.2022.151952 URL |
[43] |
Both T, Zillikens MC, Schreuders-Koedam M, et al. Hydroxychloroquine affects bone resorption both in vitro and in vivo[J]. J Cell Physiol, 2018, 233(2):1424-1433.
doi: 10.1002/jcp.26028 pmid: 28556961 |
[44] |
Litinsky I, Paran D, Levartovsky D, et al. The effects of leflunomide on clinical parameters and serum levels of IL-6, IL-10, MMP-1 and MMP-3 in patients with resistant rheumatoid arthritis[J]. Cytokine, 2006, 33(2):106-110.
pmid: 16487722 |
[45] |
Kwon OC, Oh JS, Hong S, et al. Conventional synthetic disease-modifying antirheumatic drugs and bone mineral density in rheumatoid arthritis patients with osteoporosis: Possible beneficial effect of leflunomide[J]. Clin Exp Rheumatol, 2019, 37(5):813-819.
pmid: 30767868 |
[46] |
Lee CK, Lee EY, Chung SM, et al. Effects of disease-modifying antirheumatic drugs and antiinflammatory cytokines on human osteoclastogenesis through interaction with receptor activator of nuclear factor kappaB, osteoprotegerin, and receptor activator of nuclear factor kappaB ligand[J]. Arthritis Rheum, 2004, 50(12):3831-3843.
doi: 10.1002/(ISSN)1529-0131 URL |
[47] | 王静, 赵庆杰, 卓小斌, 等. 类风湿性关节炎的治疗药物研究进展[J]. 药学实践杂志, 2019, 37(6):485-490. |
[48] | Carbone L, Vasan S, Elam R, et al. The association of methotrexate, sulfasalazine, and hydroxychloroquine use with fracture in postmenopausal women with rheumatoid arthritis: Findings from the Women's Health Initiative[J]. JBMR Plus, 2020, 4(10):e10393. |
[49] |
Poutoglidou F, Pourzitaki C, Manthou ME, et al. Infliximab prevents systemic bone loss and suppresses tendon inflammation in a collagen-induced arthritis rat model[J]. Inflammopharmacology, 2021, 29(3):661-672.
doi: 10.1007/s10787-021-00815-w pmid: 33982199 |
[50] |
Krieckaert CL, Nurmohamed MT, Wolbink G, et al. Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: A cohort study[J]. Rheumatology (Oxford), 2013, 52(3):547-553.
doi: 10.1093/rheumatology/kes320 pmid: 23221326 |
[51] |
Smolen JS, Avila JC, Aletaha D. Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: Disassociation of the link between inflammation and destruction[J]. Ann Rheum Dis, 2012, 71(5):687-693.
doi: 10.1136/annrheumdis-2011-200395 pmid: 22121130 |
[52] |
Poutoglidou F, Pourzitaki C, Manthou ME, et al. The inhibitory effect of tocilizumab on systemic bone loss and tendon inflammation in a juvenile collagen-induced arthritis rat model[J]. Connect Tissue Res, 2022, 63(6):577-589.
doi: 10.1080/03008207.2022.2042275 URL |
[53] |
Gaber T, Brinkman ACK, Pienczikowski J, et al. Impact of janus kinase inhibition with tofacitinib on fundamental processes of bone healing[J]. Int J Mol Sci, 2020, 21(3):865.
doi: 10.3390/ijms21030865 URL |
[54] |
Tada M, Inui K, Sugioka Y, et al. Abatacept might increase bone mineral density at femoral neck for patients with rheumatoid arthritis in clinical practice: AIRTIGHT study[J]. Rheumatol Int, 2018, 38(5):777-784.
doi: 10.1007/s00296-017-3922-z pmid: 29294175 |
[1] | . [J]. Clinical Focus, 2023, 38(8): 753-756. |
[2] | . [J]. Clinical Focus, 2023, 38(7): 663-667. |
[3] | Zhang Yueyue, Xie Meifang, Sun Gen. Rheumatoid arthritis complicated with T-cell large granular lymphocytic leukemia: A case report and literature review [J]. Clinical Focus, 2022, 37(8): 728-732. |
[4] | Hu Fangfang, Zhong Shiling, Di Yazhen, Wu Ling. Vascular endothelial function of juvenile idiopathic arthritis in pediatric patients: A systematic review and meta-analysis [J]. Clinical Focus, 2022, 37(3): 204-210. |
[5] | Lin Changyi, Song Minghui, Wu Peicheng. Difference between remitting seronegative symmetrical synovitis with pitting edema syndrome and seronegative rheumatoid arthritis [J]. Clinical Focus, 2022, 37(3): 262-265. |
[6] | . [J]. Clinical Focus, 2022, 37(2): 188-192. |
[7] | . [J]. Clinical Focus, 2022, 37(1): 92-96. |
[8] | Liu Ziyi, Wang Jibo. Analysis of clinical characteristics and related factors of rheumatoid arthritis complicated with malignant tumors in patients [J]. Clinical Focus, 2021, 36(3): 246-250. |
[9] | . [J]. Clinical Focus, 2021, 36(1): 75-79. |
[10] | Chen Wenyu, Wang Juanjuan, Wang Zhiming. Clinical feature of pleural effusion in 78 patients with rheumatoid arthritis [J]. Clinical Focus, 2016, 31(2): 214-217. |
[11] | Xie Qingyun, Wei Meng, Fu Peiliang, Sun Jiuyi, Qian Qirong. Association study between single nucleotide polymorphisms of interleukin 23 receptor and rheumatoid arthritis [J]. Clinical Focus, 2016, 31(1): 40-44. |
[12] | Wang Lei;Zhang Guimin;Li Li;Yu Zhibo;Yan Yonglong;Zhang Fengxiao;Sun Lijun. Application of high frequency energy Doppler ultrasound in monitoring of rheumatoid arthritis treatment [J]. Clinical Focus, 2015, 30(12): 1405-1409. |
[13] | . [J]. Clinical Focus, 2015, 30(12): 1429-1.43014e+007. |
[14] | Luo Hong;Chen Yanfei. Expression of interleukin-1β in platelet of patients with rheumatoid arthritis [J]. Clinical Focus, 2015, 30(8): 903-905. |
[15] | Xie Qingyun;Wei Meng;Wang Tao;Cheng Yue;Zhu Changliang. Lipid profile in active rheumatoid arthritis and disease activity correlation [J]. Clinical Focus, 2015, 30(8): 906-908914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||