Clinical Focus ›› 2022, Vol. 37 ›› Issue (2): 182-187.doi: 10.3969/j.issn.1004-583X.2022.02.018
Previous Articles Next Articles
Received:
2021-12-08
Online:
2022-02-20
Published:
2022-03-04
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.02.018
CAR-T产品 | 靶点 | 批准用于 LBCL时间 | 临床试验 | 数据更新 时间 | 病例数 | ORR(%) | CR(%) |
---|---|---|---|---|---|---|---|
axicabtagene ciloleucel(axi-cel) | CD19 | 2017.10 | ZUMA-1 | 2021.12 | 101 | 83 | 58 |
tisagenlecleucel(tisa-cel) | CD19 | 2018.5 | JULIET | 2021.9 | 115 | 53 | 39 |
lisocabtagene maraleucel(liso-cel) | CD19 | 2021.2 | TRANSCEND | 2021.2 | 256 | 73 | 53 |
relmacabtagene autoleucel(relma-cel) | CD19 | 2021.6 | RELIANCE | 2021.9 | 58 | 77 | 51 |
CAR-T产品 | 靶点 | 批准用于 LBCL时间 | 临床试验 | 数据更新 时间 | 病例数 | ORR(%) | CR(%) |
---|---|---|---|---|---|---|---|
axicabtagene ciloleucel(axi-cel) | CD19 | 2017.10 | ZUMA-1 | 2021.12 | 101 | 83 | 58 |
tisagenlecleucel(tisa-cel) | CD19 | 2018.5 | JULIET | 2021.9 | 115 | 53 | 39 |
lisocabtagene maraleucel(liso-cel) | CD19 | 2021.2 | TRANSCEND | 2021.2 | 256 | 73 | 53 |
relmacabtagene autoleucel(relma-cel) | CD19 | 2021.6 | RELIANCE | 2021.9 | 58 | 77 | 51 |
[1] |
Dunleavy K, Erdmann T, Lenz G. Targeting the B-cell receptor pathway in diffuse large B-cell lymphoma[J]. Cancer Treat Rev, 2018,65:41-46.
doi: S0305-7372(18)30010-0 pmid: 29549872 |
[2] |
Maurer MJ, Ghesquières H, Jais JP, et al. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy[J]. J Clin Oncol, 2014,32(10):1066-1073.
doi: 10.1200/JCO.2013.51.5866 URL |
[3] |
Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study[J]. Blood, 2017,130(16):1800-1808.
doi: 10.1182/blood-2017-03-769620 URL |
[4] | Jena B, Dotti G, Cooper L J. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor[J]. Blood, 2010,116(7):1035-1044. |
[5] |
Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans[J]. Biol Blood Marrow Transplant, 2010,16(9):1245-1256.
doi: 10.1016/j.bbmt.2010.03.014 URL |
[6] |
Kowolik CM, Topp MS, Gonzalez S, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells[J]. Cancer Res, 2006,66(22):10995-11004.
doi: 10.1158/0008-5472.CAN-06-0160 URL |
[7] |
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, et al. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy[J]. Eur J Immunol, 2016,46(3):513-522.
doi: 10.1002/eji.201445388 pmid: 26773716 |
[8] |
Kagoya Y, Tanaka S, Guo T, et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects[J]. Nat Med, 2018,24(3):352-359.
doi: 10.1038/nm.4478 pmid: 29400710 |
[9] |
Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1:A multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma[J]. Mol Ther, 2017,25(1):285-295.
doi: 10.1016/j.ymthe.2016.10.020 URL |
[10] | Neelapu SS. An interim analysis of the ZUMA-1 study of KTE-C19 in refractory,aggressive non-Hodgkin lymphoma[J]. Clin Adv Hematal Oncol, 2017,15(2):117-120. |
[11] |
Neelapu SS, Locke FL, Bartlett NL, et al. Comparison of 2-year outcomes with CAR T cells (ZUMA-1) vs salvage chemotherapy in refractory large B-cell lymphoma[J]. Blood Adv, 2021,5(20):4149-4155.
doi: 10.1182/bloodadvances.2020003848 pmid: 34478487 |
[12] | Jacobson C, Locke FL, Ghobadi A, et al. 1764 Long-Term (4- and 5-Year) Overall Survival in ZUMA-1, the Pivotal Study of Axicabtagene Ciloleucel (Axi-Cel) in Patients with Refractory Large B-Cell Lymphoma (LBCL)[12] [EB/OL] https://ash.confex.com/ash/2021/webprogram/Paper148078.html, 2021-11-11. |
[13] | Schuster SJ, Bishop MR, Tam CS, et al. Primary analysis of Juliet: A global, pivotal, phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma[C]. Blood, 2017,130(Suppl 1):577. |
[14] |
Schuster SJ, Tam CS, Borchmann P, et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study[J]. Lancet Oncol, 2021,22(10):1403-1415.
doi: 10.1016/S1470-2045(21)00375-2 pmid: 34516954 |
[15] |
Olalekan OO, Jansen JP, Lin VW, et al. Comparing efficacy, safety, and preinfusion period of axicabtagene ciloleucel versus tisagenlecleucel in relapsed/refractory large b-cell lymphoma[J]. Biol Blood Marrow Transplant, 2020,26(9):1581-1588.
doi: 10.1016/j.bbmt.2020.06.008 URL |
[16] |
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study[J]. Lancet, 2020,396(10254):839-852.
doi: S0140-6736(20)31366-0 pmid: 32888407 |
[17] |
Salles G, Spin P, Liu FF, et al. Indirect treatment comparison of liso-cel vs. salvage chemotherapy in diffuse large B-Cell lymphoma: TRANSCEND vs. SCHOLAR-1[J]. Adv Ther, 2021,38(6):3266-3280.
doi: 10.1007/s12325-021-01756-0 URL |
[18] |
Maloney DG, Kuruvilla J, Liu FF, et al. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma[J]. J Hematol Oncol, 2021,14(1):140.
doi: 10.1186/s13045-021-01144-9 URL |
[19] | Zhu J, Ying Z, Song Y, et al. Clinical response of CD19 CAR-T cells(relmacabtagene autoleucel,relma-cel)in adults with heavily-pre-treated relapsed/refractory(r/r)large B-cell lymphoma in China[J]. Blood, 2020,136(Suppl 1):39-40. |
[20] |
Wei G, Zhang Y, Zhao H, et al. CD19/CD22 dual-targeted CAR T-cell therapy for relapsed/refractory aggressive B-cell lymphoma: A safety and efficacy study[J]. Cancer Immunol Res, 2021,9(9):1061-1070.
doi: 10.1158/2326-6066.CIR-20-0675 URL |
[21] | Cao Y, Xiao Y, Wang N, et al. CD19/CD22 chimeric antigen receptor t cell cocktail therapy following autologous transplantation in patients with relapsed/refractory aggressive B cell lymphomas[J]. Transplant Cell Ther, 2021, 27(11):910.e1-910.e11. |
[22] |
Shah NN, Johnson BD, Schneider D, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial[J]. Nat Med, 2020,26(10):1569-1575.
doi: 10.1038/s41591-020-1081-3 URL |
[23] | Tong C, Zhang Y, Liu Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma[J]. Blood, 2020,136(14):1632-1644. |
[24] |
Sang W, Shi M, Yang J, et al. Phase Ⅱ trial of co-administration of CD19- and CD20-targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma[J]. Cancer Med, 2020,9(16):5827-5838.
doi: 10.1002/cam4.v9.16 URL |
[25] |
Ormhøj M, Scarfò I, Cabral ML, et al. Chimeric antigen receptor T cells targeting CD79b show efficacy in lymphoma with or without cotargeting CD19[J]. Clin Cancer Res, 2019,25(23):7046-7057.
doi: 10.1158/1078-0432.CCR-19-1337 pmid: 31439577 |
[26] | Deng W, Chen P, Lei W, et al. CD70-targeting CAR-T cells have potential activity against CD19-negative B-cell Lymphoma[J]. Cancer Commun (Lond), 2021,41(9):925-929. |
[27] |
Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: Interpreting clinical outcomes to date[J]. Blood, 2016,127(26):3312-3320.
doi: 10.1182/blood-2016-02-629063 pmid: 27207800 |
[28] |
Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J]. N Engl J Med, 2019,380(1):45-56.
doi: 10.1056/NEJMoa1804980 URL |
[29] |
Li S, Siriwon N, Zhang X, et al. Enhanced cancer immunotherapy by chimeric antigen receptor-modified T cells engineered to secrete checkpoint inhibitors[J]. Clin Cancer Res, 2017,23(22):6982-69892.
doi: 10.1158/1078-0432.CCR-17-0867 pmid: 28912137 |
[30] |
Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: Refueling the CAR[J]. Blood, 2017,129(8):1039-1041.
doi: 10.1182/blood-2016-09-738245 URL |
[31] |
Liu M, Wang X, Li Z, et al. Synergistic effect of ibrutinib and CD19 CAR-T cells on Raji cells in vivo and in vitro[J]. Cancer Sci, 2020,111(11):4051-4060.
doi: 10.1111/cas.v111.11 URL |
[32] |
Qin JS, Johnstone TG, Baturevych A, et al. Antitumor Potency of an anti-cd19 chimeric antigen receptor t-cell therapy, lisocabtagene maraleucel in combination with ibrutinib or acalabrutinib[J]. J Immunother, 2020,43(4):107-120.
doi: 10.1097/CJI.0000000000000307 URL |
[33] |
Fraietta JA, Beckwith KA, Patel PR, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia[J]. Blood, 2016,127(9):1117-1127.
doi: 10.1182/blood-2015-11-679134 pmid: 26813675 |
[34] |
Liu M, Deng H, Mu J, et al. Ibrutinib improves the efficacy of anti-CD19-CAR T-cell therapy in patients with refractory non-Hodgkin lymphoma[J]. Cancer Sci, 2021,112(7):2642-2651.
doi: 10.1111/cas.v112.7 URL |
[35] |
Sim AJ, Jain MD, Figura NB, et al. Radiation therapy as a bridging strategy for CAR T cell therapy with axicabtagene ciloleucel in diffuse large B-Cell lymphoma[J]. Int J Radiat Oncol Biol Phys, 2019,105(5):1012-1021.
doi: 10.1016/j.ijrobp.2019.05.065 URL |
[36] |
Imber BS, Sadelain M, DeSelm C, et al. Early experience using salvage radiotherapy for relapsed/refractory non-Hodgkin lymphomas after CD19 chimeric antigen receptor (CAR) T cell therapy[J]. Br J Haematol, 2020,190(1):45-51.
doi: 10.1111/bjh.v190.1 URL |
[37] |
Qi CZ, Bollu V, Yang H, et al. Cost-effectiveness analysis of tisagenlecleucel for the treatment of patients with relapsed or refractory diffuse large B-cell lymphoma in the United States[J]. Clin Ther, 2021, 43(8):1300-1319.e8.
doi: 10.1016/j.clinthera.2021.06.011 URL |
[38] |
Wakase S, Teshima T, Zhang J. Cost Effectiveness analysis of tisagenlecleucel for the treatment of adult patients with relapsed or refractory diffuse large B cell lymphoma in Japan[J]. Transplant Cell Ther, 2021, 27(6):506.e1-506.e10.
doi: 10.1016/j.jtct.2021.03.005 pmid: 33823168 |
[39] | Juillerat A, Tkach D, Yang M, et al. Straightforward Generation of ultrapure off-the-shelf allogeneic CAR-T cells[J]. Front Bioeng Biotechnol, 2020,25(8):678. |
[40] |
Morgan MA, Büning H, Sauer M, et al. Use of cell and genome modification technologies to generate improved “off-the-shelf” CAR T and CAR NK cells[J]. Front Immunol, 2020,11:1965.
doi: 10.3389/fimmu.2020.01965 URL |
[41] | Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia[J]. Sci Transl Med, 2015,7(303):303ra139. |
[42] | Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome[J]. Blood, 2014,124(2):188-195. |
[43] |
Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019,25(4):625-638.
doi: 10.1016/j.bbmt.2018.12.758 URL |
[44] |
Schuster SJ, Maziarz RT, Rusch ES, et al. Grading and management of cytokine release syndrome in patients treated with tisagenlecleucel in the JULIET trial[J]. Blood Adv, 2020,4(7):1432-1439.
doi: 10.1182/bloodadvances.2019001304 pmid: 32271899 |
[45] |
Pennisi M, Jain T, Santomasso BD, et al. Comparing CAR T-cell toxicity grading systems: application of the ASTCT grading system and implications for management[J]. Blood Adv, 2020,4(4):676-686.
doi: 10.1182/bloodadvances.2019000952 URL |
[46] |
Holtzman NG, Xie H, Bentzen S, et al. Immune effector cell-associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy for lymphoma: Predictive biomarkers and clinical outcomes[J]. Neuro Oncol, 2021,23(1):112-121.
doi: 10.1093/neuonc/noaa183 URL |
[47] |
Wudhikarn K, Palomba ML, Pennisi M, et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma[J]. Blood Cancer J, 2020,10(8):79.
doi: 10.1038/s41408-020-00346-7 pmid: 32759935 |
[48] | Shadman M, Pasquini M, Ahn KW, et al. Autologous transplant versus chimeric antigen receptor T-cell therapy for relapsed DLBCL in partial remission[J]. Blood, 2021 Sep 27. |
[49] |
Sehn LH, Salles G. Diffuse large B-cell lymphoma[J]. N Engl J Med, 2021,384(9):842-858.
doi: 10.1056/NEJMra2027612 URL |
[1] | Yang Wei, He Chendong. Primary pulmonary mucosa-associated lymphoid tissue lymphoma with dry cough as the only symptom: A case and literature review [J]. Clinical Focus, 2023, 38(7): 623-627. |
[2] | Lu Luo, Wang Fei, Gu Weiying. Clinical determination of lymphocyte subsets in peripheral blood of patients with angioimmunoblastic T cell lymphoma [J]. Clinical Focus, 2022, 37(11): 1001-1007. |
[3] | Shen Rui, Lei Yanhua, Jia Haokun. Analysis of the incidence and risk factors for venous thromboembolism in 145 patients with diffuse large B-cell lymphoma [J]. Clinical Focus, 2022, 37(1): 43-45. |
[4] | Zhao Weihua, Xu Haiping, Peng Zhigang, Yao Yibing, Jiang Yanfeng, Ma Jie. Clinical prognostic analysis on 69 cases of adult Hodgkin lymphoma [J]. Clinical Focus, 2016, 31(1): 59-62. |
[5] | Du Jianwei;Wei Xudong. Current treatment of non Hodgkin lymphoma [J]. Clinical Focus, 2015, 30(10): 1110-1119. |
[6] | Zhang Jiqing;Zhong Lei;Li Jine. Role of arsenic trioxide induced apoptosis in Burkitt lymphoma cell line Raji and influence on C-myc expression [J]. Clinical Focus, 2015, 30(10): 1123-1126. |
[7] | . [J]. Clinical Focus, 2015, 30(6): 692-693. |
[8] | LI Li-juan;GUO Xiao-jia;ZHANG Lian-sheng. Advances in treatment of diffuse large B-cell lymphoma [J]. Clinical Focus, 2014, 29(10): 1134-1139. |
[9] | LIU Yao;ZHANG Xi. Treatment and advance in mantal cell lymphoma [J]. Clinical Focus, 2014, 29(10): 1140-1146. |
[10] | HUANG Wen-qiu;WANG Yi-ni;WANG Zhao. Treatment advance in hemophagocyric lymphohistiocytosis [J]. Clinical Focus, 2014, 29(10): 1147-1150. |
[11] | . @@ [J]. Clinical Focus, 2014, 29(10): 1191-1194. |
[12] | LU Xiao-lin;ZHU Hai-yan;JING Yu;YU Li. Autologous stem cell transplantation for 2 patients with primary central nervous system lymphoma [J]. Clinical Focus, 2014, 29(6): 640-643. |
[13] | WEI An-wei;YUE Ya-guang;CHEN Guang-xia;JIANG Kui;WANG Bang-mao;ZHOU Lu;XU Dong-bo. Significance of interleukin 17 and interleukin 8 in gastric mucosa-associated lymphoid tissue lymphoma [J]. CLINICAL FOCUS, 2013, 28(11): 1246-0. |
[14] | . [J]. CLINICAL FOCUS, 2013, 28(10): 1167-1168. |
[15] | . [J]. CLINICAL FOCUS, 2013, 28(10): 1171-1173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||