Clinical Focus ›› 2022, Vol. 37 ›› Issue (2): 178-181.doi: 10.3969/j.issn.1004-583X.2022.02.017
Previous Articles Next Articles
Received:
2021-07-23
Online:
2022-02-20
Published:
2022-03-04
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.02.017
[1] |
Verma A, Patel AB, Upadhyay A, et al. Credence: Significant victory for diabetic kidney disease[J]. Trends Endocrinol Metab, 2020,31(6):391-393.
doi: 10.1016/j.tem.2020.04.002 URL |
[2] |
Lu CC, Ma KL, Ruan XZ, et al. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy[J]. Int J Med Sci, 2018,15(8):816-822.
doi: 10.7150/ijms.25543 URL |
[3] | 张青, 刘旭生, 张蕾. 糖尿病肾脏病患者肠道菌群紊乱的发生发展机制[J]. 世界科学技术-中医药现代化, 2020,22(9):3235-3240. |
[4] |
Nallu A, Sharma S, Ramezani A, et al. Gut microbiome in chronic kidney disease: Challenges and opportunities[J]. Transl Res. 2017,179:24-37.
doi: 10.1016/j.trsl.2016.04.007 URL |
[5] | 李雷, 杨云梅, 吴月. 老年2型糖尿病患者肠道菌群多样性及其炎症因子与胰岛素抵抗的相关性研究[J]. 中华危重症医学杂志 (电子版), 2018,11(5):316-321. |
[6] |
Xu KY, Xia GH, Lu JQ, et al. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients[J]. Sci Rep, 2017,7(1):1445.
doi: 10.1038/s41598-017-01387-y URL |
[7] |
Felizardo RJF, Castoldi A, Andrade-Oliveira V, et al. The microbiota and chronic kidney diseases: A double-edged sword[J]. Clin Transl Immunol, 2016,5(6):e86.
doi: 10.1038/cti.2016.36 URL |
[8] | Chen Z, Zhu S, Xu G. Targeting gut microbiota: A potential promising therapy for diabetic kidney disease[J]. Am J Transl Res, 2016,8(10):4009-4016. |
[9] |
Pluznick JL. Gut microbiota in renal physiology: Focus on short-chain fatty acids and their receptors[J]. Kidney Int, 2016,90(6):1191-1198.
doi: 10.1016/j.kint.2016.06.033 URL |
[10] |
Ikee R, Sasaki N, Yasuda T, et al. Chronic kidney disease, gut dysbiosis, and Constipation: A Burdensome triplet[J]. Microorganisms, 2020,8(12):1862.
doi: 10.3390/microorganisms8121862 URL |
[11] |
Zhao J, Ning X, Liu B, et al. Specific alterations in gut microbiota in patients with chronic kidney disease: An updated systematic review[J]. Ren Fail, 2021,43(1):102-112.
doi: 10.1080/0886022X.2020.1864404 pmid: 33406960 |
[12] |
Muskiet MH, Smits MM, Morsink LM, et al. The gut-renal axis: Do incretin-based agents confer renoprotection in diabetes?[J]. Nat Rev Nephrol, 2014,10(2):88-103.
doi: 10.1038/nrneph.2013.272 pmid: 24375052 |
[13] |
Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity[J]. Nutr Res Rev, 2018,31(1):35-51.
doi: 10.1017/S095442241700018X pmid: 29037268 |
[14] |
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008,57(6):1470-1481.
doi: 10.2337/db07-1403 URL |
[15] |
Devaraj S, Dasu MR, Park SH, et al. Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes[J]. Diabetologia, 2009,52(8):1665-1668.
doi: 10.1007/s00125-009-1394-8 pmid: 19455302 |
[16] |
Devaraj S, Dasu MR, Rockwood J, et al. Increased toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with type 1 diabetes: Further evidence of a proinflammatory state[J]. J Clin Endocrinol Metab, 2018,93(2):578-583.
doi: 10.1210/jc.2007-2185 URL |
[17] |
Liang H, Hussey SE, Sanchez-Avila A, et al. Effect of lipopolysaccharide on inflammation and insulin action in human muscle[J]. PLoS One, 2013,8(5):e63983.
doi: 10.1371/journal.pone.0063983 URL |
[18] | Chen Z, Zhu S, Xu G. Targeting gut microbiota: A potential promising therapy for diabetic kidney disease[J]. Am J Transl Res, 2016,8(10):4009-4016. |
[19] |
Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes[J]. Peptides, 2018,100:269-274.
doi: S0196-9781(17)30336-4 pmid: 29412828 |
[20] |
Shen L, Ao L, Xu H, et al. Poor short-term glycemic control in patients with type 2 diabetes impairs the intestinal mucosal barrier: A prospective, single-center, observational study[J]. BMC Endocr Disord, 2019,19(1):29.
doi: 10.1186/s12902-019-0354-7 URL |
[21] | Wu TK, Lim PS, Jin JS, et al. Impaired gut epithelial tight junction expression in hemodialysis patients complicated with intradialytic hypotension[J]. Biomed Res Int, 2018 16, 2018: 2670312. |
[22] |
Atoh K, Itoh H, Haneda M. Serum indoxyl sulfate levels in patients with diabetic nephropathy: Relation to renal function[J]. Diabetes Res Clin Pract, 2009,83(2):220-226.
doi: 10.1016/j.diabres.2008.09.053 URL |
[23] |
Sun CY, Hsu HH, Wu MS.p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells[J]. Nephrol Dial Transplant, 2013,28(1):70-78.
doi: 10.1093/ndt/gfs133 URL |
[24] |
Bolati D, Shimizu H, Yisireyili M, et al. Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-κB[J]. BMC Nephrol, 2013,14:56.
doi: 10.1186/1471-2369-14-56 URL |
[25] |
Adesso S, Magnus T, Cuzzocrea S, et al. Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: Interaction between astrocytes and microglia[J]. Front Pharmacol, 2017,8:370.
doi: 10.3389/fphar.2017.00370 URL |
[26] |
Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition[J]. PLoS One, 2012,7(3):e34026.
doi: 10.1371/journal.pone.0034026 URL |
[27] |
Fernandes ALF, Borges NA, Black AP, et al. Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients witchronic kidney disease[J]. J Bras Nefrol, 2020,42(3):307-314.
doi: 10.1590/2175-8239-jbn-2018-0214 URL |
[28] |
Niewczas MA, Sirich TL, Mathew AV, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: Metabolomic study[J]. Kidney Int, 2014,85(5):1214-1224.
doi: 10.1038/ki.2013.497 pmid: 24429397 |
[29] |
Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidas[J]. Kidney Int, 2013,83(4):582-592.
doi: 10.1038/ki.2012.448 pmid: 23325087 |
[30] |
Gruppen EG, Garcia E, Connelly MA, et al. TMAO is associated with mortality: Impact of modestly impaired renal function[J]. Sci Rep, 2017,7(1):13781.
doi: 10.1038/s41598-017-13739-9 pmid: 29061990 |
[31] | Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion[J]. Biosci Rep, 2017,37(2):BSR20160244. |
[32] | Oellgaard J, Winther SA, Hansen TS, et al. Trimethylamine N-oxide(TMAO) as a new potential therapeutic target for insulin resistance and cancer[J]. Curr Pharm Des, 2017,23(25):3699-3712. |
[33] |
Sun G, Yin Z, Liu N, et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity[J]. Biochem Biophys Res Commun, 2017,493(2):964-970.
doi: 10.1016/j.bbrc.2017.09.108 URL |
[34] |
Zhang W, Miikeda A, Zuckerman J, et al. Inhibition of microbiota-dependent TMAO production attenuates chronic kidney disease in mice[J]. Sci Rep, 2021,11(1):518.
doi: 10.1038/s41598-020-80063-0 URL |
[35] |
Gupta N, Buffa JA, Roberts AB, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease[J]. Arterioscler Thromb Vasc Biol, 2020,40(5):1239-1255.
doi: 10.1161/ATVBAHA.120.314139 URL |
[36] |
Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease[J]. Kidney Int, 2015,88(5):958-966.
doi: 10.1038/ki.2015.255 URL |
[37] |
Jia L, Dong X, Li X, et al. Benefits of resistant starch type 2 for patients with end-stage renal disease under maintenance hemodialysis: A systematic review and meta-analysis[J]. Int J Med Sci, 2021,18(3):811-820.
doi: 10.7150/ijms.51484 URL |
[38] |
Koh GY, Rowling MJ. Resistant starch as a novel dietary strategy to maintain kidney health in diabetes mellitus[J]. Nutr Rev, 2017,75(5):350-360.
doi: 10.1093/nutrit/nux006 URL |
[39] |
Liu WC, Tomino Y, Lu KC. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120[J]. Toxins (Basel), 2018,10(9):367.
doi: 10.3390/toxins10090367 URL |
[40] |
Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: A potential therapeutic target[J]. Am J Kidney Dis, 2016,67(3):483-498.
doi: 10.1053/j.ajkd.2015.09.027 pmid: 26590448 |
[41] |
Li DY, Tang WHW. Contributory role of gut microbiota and their metabolites toward cardiovascular complications in chronic kidney disease[J]. Semin Nephrol, 2018,38(2):193-205.
doi: 10.1016/j.semnephrol.2018.01.008 URL |
[42] |
Wu J, Zhang YY, Guo L, et al. Bupleurum polysaccharides attenuates lipopolysaccharide-induced inflammation via modulating Toll-like receptor 4 signaling[J]. PLoS One, 2013,8(10):e78051.
doi: 10.1371/journal.pone.0078051 URL |
[43] |
Pan L, Weng H, Li H, et al. Therapeutic effects of bupleurum polysaccharides in streptozotocin induced diabetic mice[J]. PLoS One, 2015,10(7):e0133212.
doi: 10.1371/journal.pone.0133212 URL |
[44] |
Brandt LJ, Aroniadis OC. An overview of fecal microbiota transplantation: Techniques, indications, and outcomes[J]. Gastrointest Endosc, 2013,78(2):240-249.
doi: 10.1016/j.gie.2013.03.1329 URL |
[45] |
Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota[J]. Sci Rep, 2017,7(1):1529.
doi: 10.1038/s41598-017-01751-y pmid: 28484247 |
[1] | . [J]. Clinical Focus, 2023, 38(6): 564-568. |
[2] | Li Huifang, Miao Xia. Prediction of thyroid hormone level on risk of type 2 diabetes nephropathy [J]. Clinical Focus, 2023, 38(2): 137-142. |
[3] | He Feng, Nin Lu, Luo Gao, Yang Ruifei, Li Fanfan, Cheng Xiaoqiong, An Binbin, Li Jingjuan, Liu Yuanyuan, Guo Qian, Wang Jinyang. Correlation of Chinese visceral adipose index and visceral fat area with diabetic nephropathy and their warning values [J]. Clinical Focus, 2022, 37(12): 1089-1093. |
[4] | Yao Yao, Chu Min. Relationship between serum amyloid β-protein and cognitive dysfunction in patients with diabetic kidney disease [J]. Clinical Focus, 2022, 37(9): 813-816. |
[5] | . [J]. Clinical Focus, 2022, 37(5): 467-471. |
[6] | Gao Shixin, Song Bing, Shi Kexin. Diagnosis value of serum lipoprotein α, cystatin-C and uric acid on early diabetic nephropathy [J]. Clinical Focus, 2022, 37(3): 248-252. |
[7] | Liu Lunzhi, Deng Lu, Zhang Mingxia. Effects of angiotensin Ⅱ type 1 receptor blockers on urinary nephrin and Beclin-1 mRNA excretion in urine of patients with early diabetic nephropathy [J]. Clinical Focus, 2021, 36(11): 1005-1008. |
[8] | . [J]. Clinical Focus, 2021, 36(11): 1029-1033. |
[9] | . [J]. Clinical Focus, 2021, 36(11): 1034-1040. |
[10] | Liu Meng, Hu Guicai, Yang Zongna, Guo Weiwei, Chen Wanxin. Comparative study on volume load and nutritional status in hemodialysis patients with diabetic kidney disease and non-diabetic kidney disease [J]. Clinical Focus, 2021, 36(4): 332-335. |
[11] | Wang Chunhua. Effect of alprostadil combined with Sanqi Panax Notoginseng Injection on proteinuria in early diabetic nephropathy [J]. Clinical Focus, 2015, 30(12): 1410-1412. |
[12] | . [J]. Clinical Focus, 2015, 30(6): 715-717718. |
[13] | ZHANG Chang-qin;LUO Yang. Curative effect of torasemide on diabetic nephrotic edema [J]. Clinical Focus, 2014, 29(9): 1002-1004. |
[14] | ZHOU Bin;ZHOU Ying-li;FU Yu;SHI Peng;LIN Wei-min;CAO Jia-yue. Effect of alprostadil combined with Shenmai or astragalus in treatment of diabetic nephropathy [J]. Clinical Focus, 2014, 29(7): 724-727. |
[15] | . [J]. Clinical Focus, 2014, 29(7): 814-815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||