Clinical Focus ›› 2022, Vol. 37 ›› Issue (5): 467-471.doi: 10.3969/j.issn.1004-583X.2022.05.016
Previous Articles Next Articles
Received:
2022-02-20
Online:
2022-05-20
Published:
2022-06-22
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.05.016
[1] |
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: A systematic analysis for the global burden of disease study 2017[J]. Lancet, 2020, 395(10225):709-733.
doi: 10.1016/S0140-6736(20)30045-3 URL |
[2] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: A cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822.
doi: 10.1016/S0140-6736(12)60033-6 URL |
[3] |
Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease[J]. J Intern Med, 2007, 261(1):32-43.
doi: 10.1111/j.1365-2796.2006.01746.x pmid: 17222166 |
[4] |
Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: An emerging new class of oral antidiabetic drug[J]. Diabetes Obes Metab, 2009, 11(2):79-88.
doi: 10.1111/j.1463-1326.2008.00982.x URL |
[5] |
Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2[J]. Diabetologia, 2018, 61(10): 2087-2097.
doi: 10.1007/s00125-018-4656-5 URL |
[6] |
Leoncini G, Russo E, Bussalino E, et al. SGLT2is and renal protection: From biological mechanisms to real-world clinical benefits[J]. Int J Mol Sci, 2021, 22(9):4441.
doi: 10.3390/ijms22094441 URL |
[7] |
Ellison DH. SGLT2 inhibitors, hemodynamics, and kidney protection[J]. Am J Physiol Renal Physiol, 2021, 321(1):F47-F49.
doi: 10.1152/ajprenal.00092.2021 URL |
[8] |
Mittal N, Sehray V, Mittal R, et al. Reno-protective potential of sodium glucose cotransporter-2 (SGLT2) inhibitors: Summary evidence from clinical and real-world data[J]. Eur J Pharmacol, 2021, 907:174320.
doi: 10.1016/j.ejphar.2021.174320 URL |
[9] | Wintrich J, Abdin A, Böhm M. Management strategies in heart failure with preserved ejection fraction[J]. Herz, 2022:1-8. |
[10] |
Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure[J]. N Engl J Med, 2020, 383(15):1413-1424.
doi: 10.1056/NEJMoa2022190 URL |
[11] |
Palmiero G, Cesaro A, Vetrano E, et al. Impact of SGLT2 inhibitors on heart failure: From pathophysiology to clinical effects[J]. Int J Mol Sci, 2021, 22(11):5863.
doi: 10.3390/ijms22115863 URL |
[12] |
Yanai H, Hakoshima M, Adachi H, et al. Multi-organ protective effects of sodium glucose cotransporter 2 inhibitors[J]. Int J Mol Sci, 2021, 22(9):4416.
doi: 10.3390/ijms22094416 URL |
[13] |
Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials[J]. Lancet, 2020, 396(10254):819-829.
doi: S0140-6736(20)31824-9 pmid: 32877652 |
[14] |
Rhee JJ, Jardine MJ, Chertow GM, et al. Dedicated kidney disease-focused outcome trials with sodium-glucose cotransporter-2 inhibitors: Lessons from CREDENCE and expectations from DAPA-HF, DAPA-CKD, and EMPA-KIDNEY[J]. Diabetes Obes Metab, 2020, 22(Suppl 1):46-54.
doi: 10.1111/dom.13987 URL |
[15] |
Patel AB, Mistry K, Verma A. DAPA-CKD: Significant victory for CKD with or without diabetes[J]. Trends Endocrinol Metab, 2021, 32(6):335-337.
doi: 10.1016/j.tem.2021.02.007 URL |
[16] |
McMurray JJV, Wheeler DC, Stefánsson BV, et al. Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease[J]. Circulation, 2021, 143(5):438-448.
doi: 10.1161/CIRCULATIONAHA.120.051675 pmid: 33186054 |
[17] |
Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in patients with chronic kidney disease[J]. N Engl J Med, 2020, 383(15):1436-1446.
doi: 10.1056/NEJMoa2024816 URL |
[18] |
McQuarrie EP, Gillis KA, Mark PB. Seven suggestions for successful SGLT2i use in glomerular disease-a standalone CKD therapy?[J]. Curr Opin Nephrol Hypertens, 2022, 31(3):272-277.
doi: 10.1097/MNH.0000000000000786 URL |
[19] |
Heerspink HJL, Sjöström CD, Jongs N, et al. Effects of dapagliflozin on mortality in patients with chronic kidney disease: A pre-specified analysis from the DAPA-CKD randomized controlled trial[J]. Eur Heart J, 2021, 42(13):1216-1227.
doi: 10.1093/eurheartj/ehab094 pmid: 33792669 |
[20] |
Lin FJ, Wang CC, Hsu CN, et al. Renoprotective effect of SGLT-2 inhibitors among type 2 diabetes patients with different baseline kidney function: A multi-center study[J]. Cardiovasc Diabetol, 2021, 20(1):203.
doi: 10.1186/s12933-021-01396-2 URL |
[21] |
Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): A randomised, double-blind, crossover trial[J]. Lancet Diabetes Endocrinol, 2020, 8(7):582-593.
doi: 10.1016/S2213-8587(20)30162-5 URL |
[22] | Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(21):2098-2099. |
[23] |
Xie Y, Bowe B, Gibson AK, et al. Clinical implications of estimated glomerular filtration rate dip following sodium-glucose cotransporter-2 inhibitor initiation on cardiovascular and kidney outcomes[J]. J Am Heart Assoc, 2021, 10(11):e020237.
doi: 10.1161/JAHA.120.020237 URL |
[24] | 孔淑君, 陈卫东. 慢性肾脏病氧化应激的研究进展[J]. 国际泌尿系统杂志, 2020(4):759-762. |
[25] |
Almaimani M, Sridhar VS, Cherney DZI. Sodium-glucose cotransporter 2 inhibition in non-diabetic kidney disease[J]. Curr Opin Nephrol Hypertens, 2021, 30(5):474-481.
doi: 10.1097/MNH.0000000000000724 URL |
[26] |
Kale A, Sankrityayan H, Anders HJ, et al. Klotho: A possible mechanism of action of SGLT2 inhibitors preventing episodes of acute kidney injury and cardiorenal complications of diabetes[J]. Drug Discov Today, 2021, 26(8):1963-1971.
doi: 10.1016/j.drudis.2021.04.007 URL |
[27] |
Tomita I, Kume S, Sugahara S, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition[J]. Cell Metab, 2020, 32(3):404-419.e6.
doi: S1550-4131(20)30358-2 pmid: 32726607 |
[28] | 张启伦, 叶山东. SGLT2抑制剂肾脏外糖代谢调控机制的研究进展[J]. 国际内分泌代谢杂志, 2021, 41(4):360-363. |
[29] |
张瀚桢, 郝传明. 钠-葡萄糖共转运蛋白2抑制剂在非糖尿病肾脏疾病中的肾脏保护机制研究进展[J]. 中华肾脏病杂志, 2022, 38(4):359-363.
doi: 10.3760/cma.j.cn441217-20211210-00052 |
[30] |
Hasan R, Lasker S, Hasan A, et al. Canagliflozin ameliorates renal oxidative stress and inflammation by stimulating AMPK-Akt-eNOS pathway in the isoprenaline-induced oxidative stress mode[J]. Sci Rep, 2020, 10(1):14659.
doi: 10.1038/s41598-020-71599-2 URL |
[31] |
Lu YH, Chang YP, Li T, et al. Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice[J]. Int J Biol Sci, 2020, 16(3):529-542.
doi: 10.7150/ijbs.33007 URL |
[32] |
Bao L, Gao X, Xie K, et al. Is there a diabetes-kidney-heart continuum? Perspectives from the results of the cardiovascular and renal outcome clinical trials with SGLT2 inhibitors[J]. Front Cardiovasc Med, 2021, 8:716083.
doi: 10.3389/fcvm.2021.716083 URL |
[33] |
Dekkers CCJ, Gansevoort RT. Sodium-glucose cotransporter 2 inhibitors: Extending the indication to non-diabetic kidney disease?[J]. Nephrol Dial Transplant, 2020, 35(Suppl 1):i33-i42.
doi: 10.1093/ndt/gfz264 URL |
[34] |
Reyes-Pardo H, Bautista R, Vargas-Robles H, et al. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II-dependent kidney damage[J]. BMC Nephrol, 2019, 20(1):292.
doi: 10.1186/s12882-019-1490-z pmid: 31375080 |
[35] |
Nespoux J, Patel R, Zhang H, et al. Gene knockout of the Na+-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion[J]. Am J Physiol Renal Physiol, 2020, 318(5):F1100-F1112.
doi: 10.1152/ajprenal.00607.2019 URL |
[36] |
Novikov A, Fu Y, Huang W, et al. SGLT2 inhibition and renal urate excretion: Role of luminal glucose, GLUT9, and URAT1[J]. Am J Physiol Renal Physiol, 2019, 316(1):F173-F185.
doi: 10.1152/ajprenal.00462.2018 URL |
[37] | 王燕磊, 肖建中. 钠-葡萄糖共转运蛋白2抑制剂的肾脏保护循证证据与潜在机制[J]. 中华糖尿病杂志, 2021(10):1008-1012. |
[38] | 刘玲, 张玲. 血脂异常与慢性肾脏疾病[J]. 国际泌尿系统杂志, 2007(5):680-682. |
[39] |
Xu J, Kitada M, Ogura Y, et al. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells[J]. Cells, 2021, 10(6):1457.
doi: 10.3390/cells10061457 URL |
[1] | . [J]. Clinical Focus, 2023, 38(6): 564-568. |
[2] | Li Huifang, Miao Xia. Prediction of thyroid hormone level on risk of type 2 diabetes nephropathy [J]. Clinical Focus, 2023, 38(2): 137-142. |
[3] | He Feng, Nin Lu, Luo Gao, Yang Ruifei, Li Fanfan, Cheng Xiaoqiong, An Binbin, Li Jingjuan, Liu Yuanyuan, Guo Qian, Wang Jinyang. Correlation of Chinese visceral adipose index and visceral fat area with diabetic nephropathy and their warning values [J]. Clinical Focus, 2022, 37(12): 1089-1093. |
[4] | Yao Yao, Chu Min. Relationship between serum amyloid β-protein and cognitive dysfunction in patients with diabetic kidney disease [J]. Clinical Focus, 2022, 37(9): 813-816. |
[5] | Gao Shixin, Song Bing, Shi Kexin. Diagnosis value of serum lipoprotein α, cystatin-C and uric acid on early diabetic nephropathy [J]. Clinical Focus, 2022, 37(3): 248-252. |
[6] | . [J]. Clinical Focus, 2022, 37(2): 178-181. |
[7] | Liu Lunzhi, Deng Lu, Zhang Mingxia. Effects of angiotensin Ⅱ type 1 receptor blockers on urinary nephrin and Beclin-1 mRNA excretion in urine of patients with early diabetic nephropathy [J]. Clinical Focus, 2021, 36(11): 1005-1008. |
[8] | . [J]. Clinical Focus, 2021, 36(11): 1029-1033. |
[9] | . [J]. Clinical Focus, 2021, 36(11): 1034-1040. |
[10] | Liu Meng, Hu Guicai, Yang Zongna, Guo Weiwei, Chen Wanxin. Comparative study on volume load and nutritional status in hemodialysis patients with diabetic kidney disease and non-diabetic kidney disease [J]. Clinical Focus, 2021, 36(4): 332-335. |
[11] | Wang Chunhua. Effect of alprostadil combined with Sanqi Panax Notoginseng Injection on proteinuria in early diabetic nephropathy [J]. Clinical Focus, 2015, 30(12): 1410-1412. |
[12] | . [J]. Clinical Focus, 2015, 30(6): 715-717718. |
[13] | ZHANG Chang-qin;LUO Yang. Curative effect of torasemide on diabetic nephrotic edema [J]. Clinical Focus, 2014, 29(9): 1002-1004. |
[14] | ZHOU Bin;ZHOU Ying-li;FU Yu;SHI Peng;LIN Wei-min;CAO Jia-yue. Effect of alprostadil combined with Shenmai or astragalus in treatment of diabetic nephropathy [J]. Clinical Focus, 2014, 29(7): 724-727. |
[15] | . [J]. Clinical Focus, 2014, 29(7): 814-815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||