Clinical Focus ›› 2022, Vol. 37 ›› Issue (12): 1132-1136.doi: 10.3969/j.issn.1004-583X.2022.12.013
Previous Articles Next Articles
Received:
2022-09-06
Online:
2022-12-20
Published:
2023-01-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.12.013
类别 | CAR-T | CAR-NK | CAR-M | hPSC-CAR-M |
---|---|---|---|---|
细胞来源 | 外周血(自体) | 外周血或脐带血 | 外周血 | 不受限制 |
便捷性 | 可冻存,现用现做 | 不可冻存,现用现做 | 不可冻存,现用现做 | 可冻存,及时使用 |
异质性 | 异质性 | 异质性 | 异质性 | 同质性 |
基因编辑 | 容易,随机 | 困难,随机 | 困难,随机 | 容易,均一100% |
CRS | 高 | 低 | 中 | 中 |
GVHD | 高 | 低 | 低 | 低 |
细胞库 | 否 | 否 | 否 | 是 |
实体瘤效应 | 低 | 低 | 高 | 高 |
抗感染 | 无 | 无 | 高 | 高 |
类别 | CAR-T | CAR-NK | CAR-M | hPSC-CAR-M |
---|---|---|---|---|
细胞来源 | 外周血(自体) | 外周血或脐带血 | 外周血 | 不受限制 |
便捷性 | 可冻存,现用现做 | 不可冻存,现用现做 | 不可冻存,现用现做 | 可冻存,及时使用 |
异质性 | 异质性 | 异质性 | 异质性 | 同质性 |
基因编辑 | 容易,随机 | 困难,随机 | 困难,随机 | 容易,均一100% |
CRS | 高 | 低 | 中 | 中 |
GVHD | 高 | 低 | 低 | 低 |
细胞库 | 否 | 否 | 否 | 是 |
实体瘤效应 | 低 | 低 | 高 | 高 |
抗感染 | 无 | 无 | 高 | 高 |
[1] |
Lyu C, Cui R, Wang J, et al. Intensive debulking chemotherapy improves the short-term and long-term efficacy of anti-CD19-CAR-T in refractory/relapsed DLBCL with high tumor bulk[J]. Front Oncol, 2021, 11:706087.
doi: 10.3389/fonc.2021.706087 URL |
[2] |
Zhu H, Deng H, Mu J, et al. Anti-CD22 CAR-T cell therapy as a salvage treatment in B cell malignancies refractory or relapsed after anti-CD19 CAR-T therapy[J]. Onco Targets Ther, 2021, 14:4023-4037.
doi: 10.2147/OTT.S312904 URL |
[3] |
Cui R, Lyu C, Li Q, et al. Humanized anti-CD19 chimeric antigen receptor-T cell therapy is safe and effective in lymphoma and leukemia patients with chronic and resolved hepatitis B virus infection[J]. Hematol Oncol, 2021, 39(1):75-86.
doi: 10.1002/hon.2807 URL |
[4] |
Frey NV, Shaw PA, Hexner EO, et al. Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia[J]. J Clin Oncol, 2020, 38(5):415-422.
doi: 10.1200/JCO.19.01892 pmid: 31815579 |
[5] | 李青, 邓琦. 嵌合抗原受体T细胞治疗复发难治弥漫大B细胞淋巴瘤进展[J]. 临床荟萃, 2022, 37(2):182-187. |
[6] |
Ma L, Dichwalkar T, Chang JYH, et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor[J]. Science, 2019, 365(6449):162-168.
doi: 10.1126/science.aav8692 pmid: 31296767 |
[7] |
Parihar R, Rivas C, Huynh M, et al. NK cells expressing a chimeric activating receptor eliminate MDSCs and rescue impaired CAR-T cell activity against solid tumors[J]. Cancer Immunol Res, 2019, 7(3):363-375.
doi: 10.1158/2326-6066.CIR-18-0572 pmid: 30651290 |
[8] |
Greco B, Malacarne V, De Girardi F, et al. Disrupting N-glycan expression on tumor cells boosts chimeric antigen receptor T cell efficacy against solid malignancies[J]. Sci Transl Med, 2022, 14(628):eabg3072.
doi: 10.1126/scitranslmed.abg3072 URL |
[9] |
Sun L, Kees T, Almeida AS, et al. Activating a collaborative innate-adaptive immune response to control metastasis[J]. Cancer Cell, 2021, 39(10):1361-1374.e9.
doi: 10.1016/j.ccell.2021.08.005 pmid: 34478639 |
[10] |
Raines LN, Zhao H, Wang Y, et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages[J]. Nat Immunol, 2022, 23(3):431-445.
doi: 10.1038/s41590-022-01145-x pmid: 35228694 |
[11] |
Travers M, Brown SM, Dunworth M, et al. DFMO and 5-azacytidine increase M1 macrophages in the tumor microenvironment of murine ovarian cancer[J]. Cancer Res, 2019, 79(13):3445-3454.
doi: 10.1158/0008-5472.CAN-18-4018 pmid: 31088836 |
[12] |
Zhang L, Tian L, Dai X, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions[J]. J Hematol Oncol, 2020, 13(1):153.
doi: 10.1186/s13045-020-00983-2 URL |
[13] |
Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38(8):947-953.
doi: 10.1038/s41587-020-0462-y pmid: 32361713 |
[14] |
Zhang W, Liu L, Su H, et al. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix[J]. Br J Cancer, 2019, 121(10):837-845.
doi: 10.1038/s41416-019-0578-3 URL |
[15] | Schildberger A, Rossmanith E, Eichhorn T, et al. Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide[J]. Mediators Inflamm, 2013, 2013:697972. |
[16] |
Shen J, Xu Y, Zhang S, et al. Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs[J]. Sci Adv, 2021, 7(36):eabi9787.
doi: 10.1126/sciadv.abi9787 URL |
[17] |
Pouyanfard S, Meshgin N, Cruz LS, et al. Human induced pluripotent stem cell-derived macrophages ameliorate liver fibrosis[J]. Stem Cells, 2021, 39(12):1701-1717.
doi: 10.1002/stem.3449 pmid: 34460131 |
[18] | Zhang S, Qu K, Lyu S, et al. PEAR1 is a potential regulator of early hematopoiesis of human pluripotent stem cells[J]. J Cell Physiol, 2022. |
[19] |
Gutbier S, Wanke F, Dahm N, et al. Large-scale production of human iPSC-derived macrophages for drug screening[J]. Int J Mol Sci, 2020, 21(13): 4808.
doi: 10.3390/ijms21134808 URL |
[20] |
Yanagimachi MD, Niwa A, Tanaka T, et al. Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum-and feeder cell-free conditions[J]. PLoS One, 2013, 8(4):e59243.
doi: 10.1371/journal.pone.0059243 URL |
[21] |
Bu JY, Shaw AS, Chan AC. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance[J]. Proc Natl Acad Sci U S A, 1995, 92(11):5106-5110.
doi: 10.1073/pnas.92.11.5106 URL |
[22] |
Morrissey MA, Williamson AP, Steinbach AM, et al. Chimeric antigen receptors that trigger phagocytosis[J]. Elife, 2018, 7:e36688.
doi: 10.7554/eLife.36688 URL |
[23] |
Niu Z, Chen G, Chang W, et al. Chimeric antigen receptor-modified macrophages trigger systemic anti-tumour immunity[J]. J Pathol, 2021, 253(3):247-257.
doi: 10.1002/path.5585 URL |
[24] |
Xu Y, Liu Q, Zhong M, et al. 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies[J]. J Hematol Oncol, 2019, 12(1):49.
doi: 10.1186/s13045-019-0732-7 URL |
[25] |
Gu R, Liu F, Zou D, et al. Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia[J]. J Hematol Oncol, 2020, 13(1):122.
doi: 10.1186/s13045-020-00953-8 URL |
[26] | Chen Z, Liu Y, Chen N, et al. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently[J]. Sci China Life Sci, 2022. |
[27] |
Chen N, Xu Y, Mou J, et al. Targeting of IL-10R on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells[J]. Blood Cancer J, 2021, 11(8):144.
doi: 10.1038/s41408-021-00536-x pmid: 34392305 |
[28] |
Schlam D, Bagshaw RD, Freeman SA, et al. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins[J]. Nat Commun, 2015, 6:8623.
doi: 10.1038/ncomms9623 pmid: 26465210 |
[29] |
Bartok E, Hartmann G. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids[J]. Immunity, 2020, 53(1):54-77.
doi: S1074-7613(20)30269-7 pmid: 32668228 |
[30] |
Bobadilla S, Sunseri N, Landau NR. Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein[J]. Gene Ther, 2013, 20(5):514-520.
doi: 10.1038/gt.2012.61 pmid: 22895508 |
[31] |
Cha EB, Shin KK, Seo J, et al. Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis[J]. BMB Rep, 2020, 53(8):442-447.
pmid: 32438971 |
[32] |
Moradian H, Roch T, Lendlein A, et al. mRNA transfection-induced activation of primary human monocytes and macrophages: dependence on carrier system and nucleotide modification[J]. Sci Rep, 2020, 10(1):4181.
doi: 10.1038/s41598-020-60506-4 pmid: 32144280 |
[33] |
Wang X, Wang G, Wang N, et al. A simple and efficient method for the generation of a porcine alveolar macrophage cell line for high-efficiency porcine reproductive and respiratory syndrome virus 2 infection[J]. J Virol Methods, 2019, 274:113727.
doi: 10.1016/j.jviromet.2019.113727 URL |
[34] | Kang M, Lee SH, Kwon M, et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy[J]. Adv Mater, 2021, 33(43):e2103258. |
[35] | Chen C, Jing W, Chen Y, et al. Intracavity generation of glioma stem cell-specific CAR macrophages primes locoregional immunity for postoperative glioblastoma therapy[J]. Sci Transl Med, 2022, 14(656): eabn1128. |
[36] |
Burger M, Thiounn N, Denzinger S, et al. The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial[J]. J Transl Med, 2010, 8:54.
doi: 10.1186/1479-5876-8-54 pmid: 20529333 |
[1] | Ding Hang, Liu Yuan, Zhang Lianfeng, Zhou Lin. Diagnostic value of serum IgG4 for IgG4-related diseases: A meta-analysis [J]. Clinical Focus, 2021, 36(7): 587-594. |
[2] | Wang Lingli, Zhao Zhiqiang, Jin Xinrong. Association between rs1799971 polymorphism in mu opioid receptor 1 gene and susceptibility to alcohol dependence: a meta-analysis [J]. Clinical Focus, 2021, 36(4): 303-310. |
[3] | . [J]. CLINICAL FOCUS, 2009, 24(23): 2110-2111. |
[4] | . [J]. CLINICAL FOCUS, 2009, 24(16): 1463-1466. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||