Clinical Focus ›› 2024, Vol. 39 ›› Issue (6): 572-576.doi: 10.3969/j.issn.1004-583X.2024.06.016
Received:
2024-02-01
Online:
2024-06-20
Published:
2024-07-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2024.06.016
模型 | 体内/体外实验 | 病种 | 机制 | 结果 | 参考文献 |
---|---|---|---|---|---|
无 | 体外 | 帕金森病 | 通过氢键和疏水相互作用强烈结合MAO以可逆竞争方式抑制MAO-和MAO-B | 岩藻黄素能可逆性竞争MAO,可用于治疗帕金森病 | Zielińska-Nowak等[ |
大脑中动脉损伤模型 | 体内体外均有 | 无 | 诱导Nrf2核转位并增强HO-1 | 岩藻黄素可以作为保护神经元免受脑缺血再灌注损伤的治疗药物 | Hu等[ |
创伤性脑损伤模型 | 体内体外均有 | 无 | 激动Nrf2-ARE | 岩藻黄素可提高神经元存活率并降低ROS)水平 | Zhang等[ |
帕金森病模型 | 体内 | 帕金森病 | 抑制α-突触核蛋白表达和氧化应激 | 岩藻黄素可以对抗MPTP介导的帕金森病模型小氧的病理变化 | Mumu等[ |
AD模型 | 体外 | AD | 有效减少Aβ纤维和低聚物的形成且显著降低Aβ寡聚物的体外神经毒性 | 岩藻黄素可能通过抑制Aβ聚集和减弱Aβ神经毒性来改善AD | Xiang等[ |
AD模型 | 体内体外均有 | AD | 抗氧化、抗炎以及抑制乙酰胆碱酯酶酶活性、Aβ (1-42)积累 | 岩藻黄素对AD的治疗效果较好 | Lin等[ |
无 | 体外 | 无 | 与多巴胺受体结合发挥激动剂作用的潜在机制涉及到特定的氨基酸残基。这些机制包括与D3受体的Ser196和Thr115位点结合,以及与D4受体的Ser196和Asp115位点结合。这种结合促使受体激活,进而发挥其生物学功能 | 岩藻黄素是一种潜在的D3/D4激动剂,可用于治疗帕金森病等神经退行性疾病 | Paudel等[ |
模型 | 体内/体外实验 | 病种 | 机制 | 结果 | 参考文献 |
---|---|---|---|---|---|
无 | 体外 | 帕金森病 | 通过氢键和疏水相互作用强烈结合MAO以可逆竞争方式抑制MAO-和MAO-B | 岩藻黄素能可逆性竞争MAO,可用于治疗帕金森病 | Zielińska-Nowak等[ |
大脑中动脉损伤模型 | 体内体外均有 | 无 | 诱导Nrf2核转位并增强HO-1 | 岩藻黄素可以作为保护神经元免受脑缺血再灌注损伤的治疗药物 | Hu等[ |
创伤性脑损伤模型 | 体内体外均有 | 无 | 激动Nrf2-ARE | 岩藻黄素可提高神经元存活率并降低ROS)水平 | Zhang等[ |
帕金森病模型 | 体内 | 帕金森病 | 抑制α-突触核蛋白表达和氧化应激 | 岩藻黄素可以对抗MPTP介导的帕金森病模型小氧的病理变化 | Mumu等[ |
AD模型 | 体外 | AD | 有效减少Aβ纤维和低聚物的形成且显著降低Aβ寡聚物的体外神经毒性 | 岩藻黄素可能通过抑制Aβ聚集和减弱Aβ神经毒性来改善AD | Xiang等[ |
AD模型 | 体内体外均有 | AD | 抗氧化、抗炎以及抑制乙酰胆碱酯酶酶活性、Aβ (1-42)积累 | 岩藻黄素对AD的治疗效果较好 | Lin等[ |
无 | 体外 | 无 | 与多巴胺受体结合发挥激动剂作用的潜在机制涉及到特定的氨基酸残基。这些机制包括与D3受体的Ser196和Thr115位点结合,以及与D4受体的Ser196和Asp115位点结合。这种结合促使受体激活,进而发挥其生物学功能 | 岩藻黄素是一种潜在的D3/D4激动剂,可用于治疗帕金森病等神经退行性疾病 | Paudel等[ |
[1] | Pérez Palmer N, Trejo Ortega B, Joshi P. Cognitive impairment in older adults: Epidemiology, diagnosis, and treatment[J]. Psychiatr Clin North Am, 2022, 45(4):639-661. |
[2] | van Weelden G, Bobiński M, Okła K, et al. Fucoidan structure and activity in relation to anti-cancer mechanisms[J]. Mar Drugs, 2019, 17(1):32. |
[3] | de Melo KDCM, Lisboa LDS, Queiroz MF, et al. Antioxidant activity of fucoidan modified with gallic acid using the redox method[J]. Mar Drugs. 2022 ;20(8):490. |
[4] | Wang Y, Xing M, Cao Q, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Mar Drugs, 2019 ;17(3):183. |
[5] | An JR, Su JN, Sun GY, et al. Liraglutide alleviates cognitive deficit in db/db mice: Involvement in oxidative stress, iron overload, and ferroptosis[J]. Neurochem Res, 2022, 47(2):279-294. |
[6] | An Y, Feng L, Zhang X, et al. Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1[J]. Clin Epigenetics, 2019, 11(1):139. |
[7] | Huang X, Zhao X, Li B, et al. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment-a meta-analysis of randomized controlled trials[J]. Aging, 2020, 12(4):4010-4039. |
[8] |
Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease[J]. Neurobiol Aging, 2021, 107 :86-95.
doi: 10.1016/j.neurobiolaging.2021.07.014 pmid: 34416493 |
[9] |
Yao Y, Clark CM, Trojanowski JQ, et al. Elevation of 12/15 lipoxygenase products in AD and mild cognitive impairment[J]. Ann Neurol, 2005, 58(4):623-626.
pmid: 16037976 |
[10] | Elbaz EM, Essam RM, Ahmed KA, et al. Donepezil halts acetic acid-induced experimental colitis in rats and its associated cognitive impairment through regulating inflammatory/oxidative/apoptotic cascades: An add-on to its anti-dementia activity[J]. Int Immunopharmacol, 2023, 116:109841. |
[11] | Asa H, Chunni Z, Aroa RG, et al. Deuterium‐reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington's disease[J]. TFEBS J, 2018, 285(16): 3002-3012. |
[12] | Raefsky SM, Furman R, Milne G, et al. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid β-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2018:165-176. |
[13] | Liu X, Dilxat T, Shi Q, et al. The combination of nicotinamide mononucleotide and lycopene prevents cognitive impairment and attenuates oxidative damage in D-galactose induced aging models via Keap1-Nrf2 signaling[J]. Gene, 2022, 822 :146348. |
[14] | Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11):2579 |
[15] | Yan N, Xu Z, Qu C, et al. Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF-κB signal pathway[J]. Int Immunopharmacol, 2021, 98:107844. |
[16] |
Yang T, Wang H, Xiong Y, et al. Vitamin D supplementation improves cognitive function through reducing oxidative stress regulated by telomere length in older adults with mild cognitive impairment: A 12-month randomized controlled trial[J]. J Alzheimers Dis, 2020, 78(4):1509-1518.
doi: 10.3233/JAD-200926 pmid: 33164936 |
[17] | Zhang X, Yuan M, Yang S, et al. Enriched environment improves post-stroke cognitive impairment and inhibits neuroinflammation and oxidative stress by activating Nrf2-ARE pathway[J]. Int J Neurosci, 2021, 131(7): 641-649. |
[18] | Bae M, Kim MB, Park YK, et al. Health benefits of fucoxanthin in the prevention of chronic diseases, Biochimica et biophysica acta[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020, 1865(11) :158618. |
[19] | Din NAS, Mohd Alayudin 'S, Sofian-Seng NS, et al. Brown algae as functional food source of fucoxanthin:A review[J]. Foods, 2022, 11(15):2235. |
[20] |
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention[J]. Food Funct. 2023, 14(17):7799-7824.
doi: 10.1039/d3fo02330c pmid: 37593767 |
[21] |
Foo SC, Yusoff FM, Ismail M, et al. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents[J]. J Biotechnol, 2017, 241 :175-183.
doi: S0168-1656(16)31626-1 pmid: 27914891 |
[22] | Sun H, Yang S, Zhao W, et al. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application[J]. Crit Rev Food Sci Nutr. 2023 ;63(26):7996-8012. |
[23] |
Ha AW, Na SJ, Kim WK. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet[J]. Nutr Res Pract, 2013, 7(6): 475-80.
doi: 10.4162/nrp.2013.7.6.475 pmid: 24353833 |
[24] | Karpiński TM, Adamczak A. Adamczak, fucoxanthin-An antibacterial carotenoid[J]. Antioxidants, 2019, 8(8):239. |
[25] | Zielińska-Nowak E, Cichon N, Saluk-Bijak J, et al. Nutritional supplements and neuroprotective diets and their potential clinical significance in post-stroke rehabilitation[J]. Nutrients, 2021, 13(8):2704. |
[26] | Mumu M, Das A, Emran TB, Mitra S, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[27] | Neumann U, Derwenskus F, Flaiz Flister V, et al. Fucoxanthin, A carotenoid derived from phaeodactylum tricornutum exerts antiproliferative and antioxidant activities in vitro[J]. Antioxidants, 2019, 8(6):183. |
[28] |
Yang H, Xing R, Liu S, et al. Role of fucoxanthin towards cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities[J]. Bioengineered, 2021, 12(1) 7235-7247.
doi: 10.1080/21655979.2021.1973875 pmid: 34569908 |
[29] | Oliyaei N, Moosavi-Nasab M, Tanideh N, et al. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights[J]. Brain Res Bull, 2023, 193:11-21. |
[30] | Xu Y, Jiang C, Wu J, et al. Ketogenic diet ameliorates cognitive impairment and neuroinflammation in a mouse model of Alzheimer's disease[J]. CNS Neurosci Ther, 2022, 28(4) :580-592. |
[31] |
Boxer AL, Sperling R. Accelerating Alzheimer's therapeutic development: The past and future of clinical trials[J]. Cell, 2023, 186(22):4757-4772.
doi: 10.1016/j.cell.2023.09.023 pmid: 37848035 |
[32] | 2022 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2022, 18(4):700-789. |
[33] | Ahmad T, Eapen MS, Ishaq M, et al. Anti-inflammatory activity of fucoidan extracts in vitro[J]. Mar drugs, 2021, 19(12):702. |
[34] | Akter R, Afrose A, Rahman MR, et al. A comprehensive analysis into the therapeutic application of natural products as SIRT6 modulators in Alzheimer's disease, aging, cancer, inflammation, and diabetes[J]. Int J Mol Sci, 2021, 22(8):4180. |
[35] |
Dark HE, An Y, Duggan MR, et al. Alzheimer's and neurodegenerative disease biomarkers in blood predict brain atrophy and cognitive decline[J]. Alzheimers Res Ther, 2024, 16(1):94.
doi: 10.1186/s13195-024-01459-y pmid: 38689358 |
[36] |
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis[J]. Ageing Res Rev, 2019, 50:1-8.
doi: S1568-1637(18)30306-4 pmid: 30610927 |
[37] | Qiu S, Palavicini JP, Wang J, et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer's disease-like neuroinflammation and cognitive impairment[J]. Mol Neurodegener, 2021, 16(1) :64. |
[38] | Tian Z, Ji X, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects[J]. Int J Mol Sci, 2022, 23(11):6224. |
[39] | Wang Y, Lin Y, Wang L, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer's disease mice[J]. Aging, 2020, 12(20):20862-20879. |
[40] | Mumu M, Das A, Emran TB, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[41] | El-Far YM, Khodir AE, Emarah ZA, et al. Fucoidan ameliorates hepatocellular carcinoma induced in rats: Effect on miR143 and inflammation[J]. Nutr Cancer, 2021, 73(8):1498-1510. |
[42] | Liu Y, Huang H, Xu Z, et al. Fucoidan protects the pancreas and improves glucose metabolism through inhibiting inflammation and endoplasmic reticulum stress in T2DM rats[J]. Food Funct, 2022, 13(5):2693-2709. |
[43] |
Park J, Cha JD, Choi KM, et al. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo[J]. Int Immunopharmacol, 2017, 43:91-98.
doi: S1567-5769(16)30498-2 pmid: 27987467 |
[44] | Infantino R, Boccella S, Scuteri D, et al. Guida, 2-pentadecyl-2-oxazoline prevents cognitive and social behaviour impairments in the Amyloid β-induced Alzheimer-like mice model: Bring the α2 adrenergic receptor back into play[J]. Biomed Pharmacother, 2022, 156:113844. |
[45] |
Zhao D, Kwon SH, Chun YS, et al. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells[J]. Neurochem Res, 2017, 42(2):667-677.
doi: 10.1007/s11064-016-2123-6 pmid: 27933547 |
[46] | Chen Y, Lu H, Ding Y, et al. Dietary protective potential of fucoxanthin as an active food component on neurological disorders[J]. J Agric Food Chem, 2023, 71(8):3599-3619. |
[47] | Li J, Liu W, Sun W, et al. A study on autophagy related biomarkers in Alzheimer's disease based on bioinformatics[J]. Cell Mol Neurobiol, 2023, 43(7):3693-3703. |
[48] |
Kumari S, Dhapola R, Reddy DH. Apoptosis in Alzheimer's disease: Insight into the signaling pathways and therapeutic avenues[J]. Apoptosis, 2023, 28(7-8):943-957.
doi: 10.1007/s10495-023-01848-y pmid: 37186274 |
[49] |
Liu J, Li L. Targeting autophagy for the treatment of Alzheimer's disease: Challenges and opportunities[J]. Front Mol Neurosci, 2019, 12:203.
doi: 10.3389/fnmol.2019.00203 pmid: 31507373 |
[50] | Qin C, Bai L, Li Y, et al. The functional mechanism of bone marrow-derived mesenchymal stem cells in the treatment of animal models with Alzheimer's disease: Crosstalk between autophagy and apoptosis[J]. Stem Cell Res Ther. 2022 ;13(1):90. |
[51] |
Hu L, Chen W, Tian F, et al. Neuroprotective role of fucoxanthin against cerebral ischemic/reperfusion injury through activation of Nrf2/HO-1 signaling[J]. Biomed Pharmacother, 2018, 106:1484-1489.
doi: S0753-3322(18)32025-0 pmid: 30119223 |
[52] | Zhang L, Wang H, Fan Y, et al. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways[J]. Sci Rep, 2017, 7(1):46763. |
[53] | Mumu M, Das A, Emran TB, et al. Fucoxanthin: A promising phytochemical on diverse pharmacological targets[J]. Front Pharmacol, 2022, 13:929442. |
[54] | Xiang S, Liu F, Lin J, et al. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments[J]. Agric Food Chem, 2017, 65(20):4092-4102. |
[55] | Lin J, Huang L, Yu J, et al. Fucoxanthin, a marine carotenoid, reverses scopolamine-induced cognitive impairments in mice and inhibits acetylcholinesterase in vitro[J]. Mar Drugs, 2016, 14(4):67. |
[56] | Paudel P, Seong SH, Jung HA, et al. Characterizing fucoxanthin as a selective dopamine D3/D4 receptor agonist: Relevance to Parkinson's disease[J]. Chem Biol Interact, 2019, 310:108757. |
[1] | . [J]. Clinical Focus, 2024, 39(2): 172-176. |
[2] | Xiao Huangyi, Yuan Jiankun, Yan Ziyu, Zeng Wenshu, Lu Lanmo, Wang Jun. Effectiveness of cognitive interventions on elderly patients with amnestic mild cognitive impairment: A meta-analysis [J]. Clinical Focus, 2024, 39(1): 12-19. |
[3] | . [J]. Clinical Focus, 2023, 38(11): 1031-1033. |
[4] | Xiao Wangjing, Li Xinmeng, Lu Songling, Sun Xuehua. Efficacy and safety of repetitive transcranial magnetic stimulation treatment on central neurogenic dysphagia: A meta-analysis [J]. Clinical Focus, 2023, 38(7): 588-599. |
[5] | . [J]. Clinical Focus, 2023, 38(6): 554-558. |
[6] | . [J]. Clinical Focus, 2023, 38(5): 455-458. |
[7] | Jia Yangjuan, Han Ning, Guo Hui, Li Cancan, Li Jianguo. Value of different clock drawing tests in identifying acute post-stroke cognitive impairment no dementia [J]. Clinical Focus, 2023, 38(2): 143-148. |
[8] | Pang Shu, Zhang Mingkai, Bai Hongmei, Wu Yongdong. Congenital insensitivity to pain with anhidrosis: A case report and literature review [J]. Clinical Focus, 2023, 38(1): 64-67. |
[9] | . [J]. Clinical Focus, 2022, 37(12): 1137-1141. |
[10] | . [J]. Clinical Focus, 2022, 37(8): 748-752. |
[11] | Li Zhongmei, Ran Li, Jiang Yi, Guo Zhiwei, Mu Qiwen. Correlations between sleep disorder and cognitive function in elderly patients with mild cognitive impairment [J]. Clinical Focus, 2022, 37(7): 607-611. |
[12] | Luo Weigang, Yin Yuanyuan, Ren Huiling. Analysis and treatment of primary spinal infection [J]. Clinical Focus, 2022, 37(6): 525-529. |
[13] | Xia Jing, Chen Miaocun, Lin Min, Hao Youguo. Effect of high frequency and low frequency repetitive transcranial magnetic stimulation in the treatment of post-stroke spasticity: A comparative study [J]. Clinical Focus, 2022, 37(5): 427-430. |
[14] | Zhai Xiayin, Lan Rui. Relationship between serum irisin, manganese-containing superoxide dismutase and cognitive function of patients with chronic insomnia [J]. Clinical Focus, 2022, 37(4): 329-333. |
[15] | . [J]. Clinical Focus, 2021, 36(12): 1144-1147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||