[1] |
郭静. 阿司匹林、硫酸氢氯吡格雷联合膳食干预治疗脑梗死患者的临床效果[J]. 中国医药导报, 2018,15(8):72-75.
|
[2] |
Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease[J]. Nat Rev Nephrol, 2011,7(5):286-294.
doi: 10.1038/nrneph.2011.26
pmid: 21423249
|
[3] |
Chen J, Cui C, Yang X, et al. MiR-126 affects brain-heart interaction after cerebral ischemic stroke[J]. Transl Stroke Res, 2017,8(4):374-385.
doi: 10.1007/s12975-017-0520-z
URL
|
[4] |
Du K, Zhao C, Wang L, et al. MiR-191 inhibit angiogenesis after acute ischemic stroke targeting VEZF1 [ J]. Aging, 2019,11(9):2762-2786.
|
[5] |
Wang SS, Li YQ, Liang YZ, et al. Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance[J]. J Cell Mol Med, 2017,21(12):3372-3380.
doi: 10.1111/jcmm.2017.21.issue-12
URL
|
[6] |
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018,51(9):666-682.
|
[7] |
高君武, 陈治国, 刘海洋, 等. 丁苯酞联合拜阿司匹林、硫酸氢氯吡格雷治疗急性脑梗死患者临床疗效[J]. 临床军医杂志, 2020,48(8):973-974.
|
[8] |
周亦, 宋丽艳, 唐甲凡, 等. 丁苯酞软胶囊联合硫酸氢氯吡格雷治疗急性期脑梗死的临床观察[J]. 血栓与止血学, 2018,24(1):60-61, 64.
|
[9] |
孔伟, 韩晨阳. 阿加曲班联合氯吡格雷治疗急性后循环缺血性脑梗死的疗效观察[J]. 现代药物与临床, 2018,33(1):50-53.
|
[10] |
蔡传萍, 金冬梅, 录欣欣, 等. 功能性电刺激治疗对脑梗死大鼠神经功能和缺血半暗带GSK-3β蛋白的影响[J]. 中国康复医学杂志, 2018,33(6):647-652.
|
[11] |
徐炳东, 吴正懂, 麦鸿成, 等. 影像学损害与血流灌注不匹配脑梗死患者发病6~24 h血管内治疗疗效分析[J]. 中国神经精神疾病杂志, 2018,44(9):555-558.
|
[12] |
冉志军, 张显军, 杨黎侠, 等. 氯吡格雷联合前列地尔用于急性脑梗死治疗的疗效观察[J]. 贵州医药, 2019,43(12):1944-1945.
|
[13] |
张丽, 巩晓英, 王继恒, 等. 阿托伐他汀联合氯吡格雷及拜阿司匹林对进展性脑梗死患者颈动脉粥样硬化的疗效评价[J]. 贵州医药, 2019,43(12):1945-1947.
|
[14] |
Martinez B, Peplow PV. MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury[J]. Neural Regen Res, 2017,12(11):1749-1761.
doi: 10.4103/1673-5374.219025
pmid: 29239310
|
[15] |
Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J]. Theranostics, 2019,9(10):2910-2923.
doi: 10.7150/thno.30879
URL
|
[16] |
Gacoń J, Badacz R, Stępień E, et al. Diagnostic and prognostic micro-RNAs in ischaemic stroke due to carotid artery stenosis and in acute coronary syndrome: A four-year prospective study[J]. Kardiol Pol, 2018,76(2):362-369.
doi: 10.5603/KP.a2017.0243
URL
|
[17] |
Wu XQ, Tian XY, Wang ZW, et al. miR-191 secreted by platelet-derived microvesicles induced apoptosis of renal tubular epithelial cells and participated in renal ischemia-reperfusion injury via inhibiting CBS[J]. Cell Cycle, 2019,18(2):119-129.
doi: 10.1080/15384101.2018.1542900
URL
|
[18] |
Yang T, Song J, Bu X, et al. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury[J]. J Neurochem, 2016,137(1):122-129.
doi: 10.1111/jnc.13534
URL
|
[19] |
Zhou H, Yang C, Bai F, et al. Electroacupuncture alleviates brain damage through targeting of neuronal calcium sensor 1 by miR-191a-5p after ischemic stroke[J]. Rejuvenation Res, 2017,20(6):492-505.
doi: 10.1089/rej.2017.1920
URL
|
[20] |
Yang Q, Wang X, Cui J, et al. Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia[J]. BMC Complement Altern Med, 2014,14(6):183-195.
doi: 10.1186/1472-6882-14-183
URL
|