临床荟萃 ›› 2021, Vol. 36 ›› Issue (10): 946-950.doi: 10.3969/j.issn.1004-583X.2021.10.016
收稿日期:
2021-06-18
出版日期:
2021-10-20
发布日期:
2021-11-10
通讯作者:
彭劼
E-mail:pjie138@163.com
Received:
2021-06-18
Online:
2021-10-20
Published:
2021-11-10
摘要:
脓毒症是临床常见的危急重症,可导致休克或多器官功能障碍,病死率高,其常见的临床现象是血小板减少。血小板是序贯器官衰竭评估(SOFA)的评分项目之一,与脓毒症的发展及预后密切相关。近年来,血小板在机体炎症和免疫反应中的作用也越来越被重视。故进一步了解脓毒症相关性血小板减少的病因及分子机制极其重要,这对脓毒症的临床治疗和预后评估有重大的意义。本文将对脓毒症相关性血小板减少的研究进展进行综述。
中图分类号:
高其庆, 李卓虹, 周浩, 彭劼. 脓毒症相关性血小板减少[J]. 临床荟萃, 2021, 36(10): 946-950.
[1] |
Fleischmann C, Scherag A, Adhikari NK, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J]. Am J Respir Crit Care Med, 2016,193(3):259-272.
doi: 10.1164/rccm.201504-0781OC URL |
[2] |
Paoli CJ, Reynolds MA, Sinha M, et al. Epidemiology and costs of sepsis in the united states-an analysis based on timing of diagnosis and severity level[J]. Crit Care Med, 2018,46(12):1889-1897.
doi: 10.1097/CCM.0000000000003342 URL |
[3] | Sakr Y, Jaschinski U, Wittebole X, et al. Sepsis in intensive care unit patients: Worldwide data from the intensive care over nations audit[J]. Open Forum Infect Dis, 2018,5(12):y313. |
[4] |
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study[J]. Lancet, 2020,395(10219):200-211.
doi: 10.1016/S0140-6736(19)32989-7 URL |
[5] |
Claushuis TA, van Vught LA, Scicluna BP, et al. Thrombocytopenia is associated with a dysregulated host response in critically ill sepsis patients[J]. Blood, 2016,127(24):3062-3072.
doi: 10.1182/blood-2015-11-680744 pmid: 26956172 |
[6] | Koyama K, Katayama S, Muronoi T, et al. Time course of immature platelet count and its relation to thrombocytopenia and mortality in patients with sepsis[J]. PLoS One, 2018,13(1):e192064. |
[7] |
de Stoppelaar SF, van't Veer C, van der Poll T. The role of platelets in sepsis[J]. Thromb Haemost, 2014,112(4):666-677.
doi: 10.1160/TH14-02-0126 URL |
[8] |
Dewitte A, Lepreux S, Villeneuve J, et al. Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically [corrected] ill patients?[J]. Ann Intensive Care, 2017,7(1):115.
doi: 10.1186/s13613-017-0337-7 URL |
[9] |
Kaya KE, Bulut C, Sonmezer MC, et al. Risk factors for linezolid-associated thrombocytopenia and negative effect of carbapenem combination[J]. J Infect Dev Ctries, 2019,13(10):886-891.
doi: 10.3855/jidc.10859 URL |
[10] |
Eissa DS, El-Farrash RA. New insights into thrombopoiesis in neonatal sepsis[J]. Platelets, 2013,24(2):122-128.
doi: 10.3109/09537104.2012.696748 URL |
[11] | Segre E, Pigozzi L, Lison D, et al. May thrombopoietin be a useful marker of sepsis severity assessment in patients with SIRS entering the emergency department?[J]. Clin Chem Lab Med, 2014,52(10):1479-1483. |
[12] |
Ghimire S, Ravi S, Budhathoki R, et al. Current understanding and future implications of sepsis-induced thrombocytopenia[J]. Eur J Haematol, 2021,106(3):301-305.
doi: 10.1111/ejh.v106.3 URL |
[13] |
Li C, Li J, Ni H. Crosstalk between platelets and microbial pathogens[J]. Front Immunol, 2020,11:1962.
doi: 10.3389/fimmu.2020.01962 URL |
[14] |
Larkin CM, Santos-Martinez MJ, Ryan T, et al. Sepsis-associated thrombocytopenia[J]. Thromb Res, 2016,141:11-16.
doi: 10.1016/j.thromres.2016.02.022 URL |
[15] |
Greco E, Lupia E, Bosco O, et al. Platelets and multi-organ failure in sepsis[J]. Int J Mol Sci, 2017,18(10):2200.
doi: 10.3390/ijms18102200 URL |
[16] | Hurley SM, Lutay N, Holmqvist B, et al. The dynamics of platelet activation during the progression of streptococcal sepsis[J]. PLoS One, 2016,11(9):e163531. |
[17] |
Pieterse E, Rother N, Yanginlar C, et al. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps[J]. Front Immunol, 2016,7:484.
pmid: 27867387 |
[18] | Larkin CM, Hante NK, Breen EP, et al. Role of matrix metalloproteinases 2 and 9, toll-like receptor 4 and platelet-leukocyte aggregate formation in sepsis-associated thrombocytopenia[J]. PLoS One, 2018,13(5):e196478. |
[19] |
Vayne C, Guery EA, Rollin J, et al. Pathophysiology and diagnosis of drug-induced immune thrombocytopenia[J]. J Clin Med, 2020,9(7):2212.
doi: 10.3390/jcm9072212 URL |
[20] |
Kam T, Alexander M. Drug-induced immune thrombocytopenia[J]. J Pharm Pract, 2014,27(5):430-439.
doi: 10.1177/0897190014546099 URL |
[21] | 张培蕾, 周耕, 程永德. 肝素诱导性血小板减少症相关研究进展[J]. 介入放射学杂志, 2017,26(5):385-389. |
[22] | 李静, 安伟伟. 危重病患者血小板减少症发病机制及治疗的研究进展[J]. 医学综述, 2018,24(8):1546-1550. |
[23] |
Clark SR, Ma AC, Tavener S A, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007,13(4):463-469.
doi: 10.1038/nm1565 URL |
[24] |
Dewitte A, Lepreux S, Villeneuve J, et al. Correction to: Blood platelets and sepsis pathophysiology: A new therapeutic prospect in critically ill patients?[J]. Ann Intensive Care, 2018,8(1):32.
doi: 10.1186/s13613-018-0378-6 URL |
[25] |
Karim ZA, Zhang J, Banerjee M, et al. IkappaB kinase phosphorylation of SNAP-23 controls platelet secretion[J]. Blood, 2013,121(22):4567-4574.
doi: 10.1182/blood-2012-11-470468 URL |
[26] |
Manne BK, Xiang SC, Rondina MT. Platelet secretion in inflammatory and infectious diseases[J]. Platelets, 2017,28(2):155-164.
doi: 10.1080/09537104.2016.1240766 URL |
[27] |
Cardenas EI, Breaux K, Da Q, et al. Platelet munc13-4 regulates hemostasis, thrombosis and airway inflammation[J]. Haematologica, 2018,103(7):1235-1244.
doi: 10.3324/haematol.2017.185637 pmid: 29674495 |
[28] |
Williams CM, Li Y, Brown E, et al. Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice[J]. Blood Adv, 2018,2(24):3627-3636.
doi: 10.1182/bloodadvances.2018023291 URL |
[29] | Al HR, Ren Q, Ye S, et al. Munc18b/STXBP2 is required for platelet secretion[J]. Blood, 2012,120(12):2493-2500. |
[30] |
Morrell CN, Aggrey AA, Chapman LM, et al. Emerging roles for platelets as immune and inflammatory cells[J]. Blood, 2014,123(18):2759-2767.
doi: 10.1182/blood-2013-11-462432 pmid: 24585776 |
[31] |
Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: Mechanisms of bacterial-induced platelet activation[J]. J Thromb Haemost, 2011,9(6):1097-1107.
doi: 10.1111/j.1538-7836.2011.04264.x pmid: 21435167 |
[32] |
Hamzeh-Cognasse H, Damien P, Chabert A, et al. Platelets and infections-complex interactions with bacteria[J]. Front Immunol, 2015,6:82.
doi: 10.3389/fimmu.2015.00082 pmid: 25767472 |
[33] |
Andonegui G, Kerfoot SM, McNagny K, et al. Platelets express functional Toll-like receptor-4[J]. Blood, 2005,106(7):2417-2423.
pmid: 15961512 |
[34] |
Aslam R, Speck ER, Kim M, et al. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo[J]. Blood, 2006,107(2):637-641.
doi: 10.1182/blood-2005-06-2202 URL |
[35] |
Cognasse F, Nguyen K A, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors[J]. Front Immunol, 2015,6:83.
doi: 10.3389/fimmu.2015.00083 pmid: 25784910 |
[36] | Lopes-Pires ME, Naime AC, Almeida CN, et al. PKC and AKT modulate cGMP/PKG signaling pathway on platelet aggregation in experimental sepsis[J]. PLoS One, 2015,10(9):e137901. |
[37] |
Vogel S, Bodenstein R, Chen Q, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis[J]. J Clin Invest, 2015,125(12):4638-4654.
doi: 10.1172/JCI81660 URL |
[38] |
Carestia A, Rivadeneyra L, Romaniuk MA, et al. Functional responses and molecular mechanisms involved in histone-mediated platelet activation[J]. Thromb Haemost, 2013,110(5):1035-1045.
doi: 10.1160/TH13-02-0174 URL |
[39] |
Biswas S, Zimman A, Gao D, et al. TLR2 plays a key role in platelet hyperreactivity and accelerated thrombosis associated with hyperlipidemia[J]. Circ Res, 2017,121(8):951-962.
doi: 10.1161/CIRCRESAHA.117.311069 URL |
[40] |
Verschoor A, Langer HF. Crosstalk between platelets and the complement system in immune protection and disease[J]. Thromb Haemost, 2013,110(5):910-919.
doi: 10.1160/TH13-02-0102 URL |
[41] |
Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins[J]. J Thromb Haemost, 2009,7(Suppl 1):200-205.
doi: 10.1111/jth.2009.7.issue-s1 URL |
[42] |
Brennan MP, Loughman A, Devocelle M, et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation[J]. J Thromb Haemost, 2009,7(8):1364-1372.
doi: 10.1111/j.1538-7836.2009.03495.x pmid: 19486275 |
[43] |
Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPIIbIIIa[J]. Infect Immun, 2010,78(1):413-422.
doi: 10.1128/IAI.00664-09 pmid: 19884334 |
[44] |
Plummer C, Wu H, Kerrigan SW, et al. A serine-rich glycoprotein of Streptococcus sanguis mediates adhesion to platelets via GPIb[J]. Br J Haematol, 2005,129(1):101-109.
doi: 10.1111/bjh.2005.129.issue-1 URL |
[45] |
Bensing BA, Lopez JA, Sullam PM. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha[J]. Infect Immun, 2004,72(11):6528-6537.
doi: 10.1128/IAI.72.11.6528-6537.2004 URL |
[46] |
Arman M, Krauel K. Human platelet IgG Fc receptor Fcgamma RIIA in immunity and thrombosis[J]. J Thromb Haemost, 2015,13(6):893-908.
doi: 10.1111/jth.12905 pmid: 25900780 |
[47] | Tomo S, Mohan S, Ramachandrappa VS, et al. Dynamic modulation of DC-SIGN and FcUpsilonR2A receptors expression on platelets in dengue[J]. PLoS One, 2018,13(11):e206346. |
[1] | 黄赛虎, 龙中洁, 董兴强, 孟祥营, 吴水燕, 柏振江. 血液肿瘤患儿合并脓毒血症的病原学特点及临床特征[J]. 临床荟萃, 2024, 39(1): 38-42. |
[2] | 崔兰丹, 杨春燕. 脓毒症患者甲状腺激素的变化特点及研究进展[J]. 临床荟萃, 2024, 39(1): 70-74. |
[3] | 杨金强, 张仁敏. 降钙素原与血小板比值评估发热伴血小板减少综合征预后的价值[J]. 临床荟萃, 2023, 38(4): 346-351. |
[4] | 高伟康, 全建华, 牛新荣. MODS并肾上腺危象漏诊患者1例并文献复习[J]. 临床荟萃, 2023, 38(4): 356-358. |
[5] | 唐爱军, 汪丽韡. 脓毒症患者入院时血小板计数及凝血指标对28天生存状况的预测价值[J]. 临床荟萃, 2023, 38(3): 250-254. |
[6] | 李仁霞, 周泽平. 血小板生成素受体激动剂在成人免疫性血小板减少症中的应用[J]. 临床荟萃, 2023, 38(12): 1140-1145. |
[7] | 周利娟, 诸彭伟, 曹梅, 程真梅, 吴峤微, 李勇. 铁蛋白、红细胞参数及血浆D-二聚体与儿童脓毒症的相关性[J]. 临床荟萃, 2023, 38(1): 60-63. |
[8] | 刘佩华, 杨倩, 刘志强, 梁璐. CVVHDF联合活性炭血液灌流器治疗鱼胆中毒致多脏器功能障碍综合症一例[J]. 临床荟萃, 2022, 37(8): 738-742. |
[9] | 周彬, 曾词正, 黄宇戈, 钟娩玲, 吴家园. pSOFA评分联合C-反应蛋白、降钙素原在脓毒症患儿预后评估中的作用[J]. 临床荟萃, 2022, 37(7): 616-622. |
[10] | 秦梅杰, 田茂露, 杨宇齐, 查艳, 袁静. 贝利尤单抗联合环孢素治疗难治性系统性红斑狼疮继发免疫性血小板减少1例并文献复习[J]. 临床荟萃, 2022, 37(6): 544-547. |
[11] | 张孟媛, 朱勇. 降钙素原清除率及序贯器官衰竭估计评分对脓毒症患者预后的预测价值[J]. 临床荟萃, 2022, 37(3): 225-229. |
[12] | 吴琼, 孙锋, 张凯, 王智怡, 张娜娜, 程慧, 向阳, 常晓慧. 艾曲泊帕联合小剂量泼尼松治疗老年难治复发原发免疫性血小板减少症疗效观察[J]. 临床荟萃, 2022, 37(11): 1008-1011. |
[13] | 肖刘牛, 钟燕霞, 李树生. 体外血液净化技术对脓毒症临床预后及细胞因子影响的Meta分析[J]. 临床荟萃, 2022, 37(1): 5-13. |
[14] | 侯伟, 张丽君, 张曼, 王亚坤, 贾美轩, 田利远. 外周血白细胞不高的脓毒症患儿84例临床分析[J]. 临床荟萃, 2021, 36(9): 799-802. |
[15] | Eamran Hossain, 田亚, 陈源, 张少丹, 张会丰. IPEX综合征并发肠源性脓毒症1例并文献复习[J]. 临床荟萃, 2021, 36(5): 453-457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||