临床荟萃 ›› 2022, Vol. 37 ›› Issue (1): 66-71.doi: 10.3969/j.issn.1004-583X.2022.01.013
收稿日期:
2021-10-20
出版日期:
2022-01-20
发布日期:
2022-01-20
通讯作者:
张晓梅
E-mail:zhangxm322@smu.edu.cn
基金资助:
Received:
2021-10-20
Online:
2022-01-20
Published:
2022-01-20
摘要:
糖代谢紊乱是危重患者常见的临床表现,血糖升高是患者病死率增加的独立危险因素。因此,安全有效的血糖管理是提高危重患者救治质量的重要环节。近年来,随着技术的进步和研究的深入,危重患者血糖管理的效果越来越好, 血糖目标由既往的单一化逐步向多样化过渡,血糖监测和胰岛素给药模式也越来越符合患者的个性化需求。本文将从目标血糖、血糖监测方法、胰岛素调节方案3个方面对危重患者血糖管理的研究进展进行综述,以期为临床危重患者血糖管理提供理论依据,并开拓关于血糖管理研究的新思路。
中图分类号:
宋学梅, 曹猛, 项丽君, 王园, 张晓梅. 危重患者的血糖管理[J]. 临床荟萃, 2022, 37(1): 66-71.
[1] |
Pérez A, Ramos A, Carreras G. Insulin therapy in hospitalized patients[J]. Am J Ther, 2020, 27(1):e71-e78.
doi: 10.1097/MJT.0000000000001078 URL |
[2] |
Salinas PD, Mendez CE. Glucose management technologies for the critically ill[J]. J Diabetes Sci Technol, 2019, 13(4):682-690.
doi: 10.1177/1932296818822838 pmid: 30638048 |
[3] |
Carpenter DL, Gregg SR, Xu K, et al. Prevalence and impact of unknown diabetes in the ICU[J]. Crit Care Med, 2015, 43(12):e541-e550.
doi: 10.1097/CCM.0000000000001353 URL |
[4] |
Van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients[J]. N Engl J Med, 2001, 345(19):1359-1367.
doi: 10.1056/NEJMoa011300 URL |
[5] |
Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis[J]. N Engl J Med, 2008, 358(2):125-139.
doi: 10.1056/NEJMoa070716 URL |
[6] |
Agus MS, Wypij D, Hirshberg EL, et al. Tight glycemic control in critically ill children[J]. N Engl J Med, 2017, 376(8):729-741.
doi: 10.1056/NEJMoa1612348 URL |
[7] |
NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients[J]. N Engl J Med, 2009, 360(13):1283-1297.
doi: 10.1056/NEJMoa0810625 URL |
[8] |
Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit[J]. Clin Nutr, 2019, 38(1):48-79.
doi: 10.1016/j.clnu.2018.08.037 URL |
[9] |
Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016[J]. Intensive Care Med, 2017, 43(3):304-377.
doi: 10.1007/s00134-017-4683-6 URL |
[10] |
Chase JG, Desaive T, Bohe J, et al. Improving glycemic control in critically ill patients: Personalized care to mimic the endocrine pancreas[J]. Crit Care, 2018, 22(1):182.
doi: 10.1186/s13054-018-2110-1 URL |
[11] |
Krinsley JS, Egi M, Kiss A, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: An international multicenter cohort study[J]. Crit Care, 2013, 17(2):R37.
doi: 10.1186/cc12547 URL |
[12] |
Egi M, Bellomo R, Stachowski E, et al. Blood glucose concentration and outcome of critical illness: the impact of diabetes[J]. Crit Care Med, 2008, 36(8):2249-2255.
doi: 10.1097/CCM.0b013e318181039a URL |
[13] |
Di Muzio F, Presello B, Glassford NJ, et al. Liberal versus conventional glucose targets in critically ill diabetic patients: An exploratory safety cohort assessment[J]. Crit Care Med, 2016, 44(9):1683-1691.
doi: 10.1097/CCM.0000000000001742 URL |
[14] |
Kar P, Plummer MP, Bellomo R, et al. Liberal glycemic control in critically ill patients with type 2 diabetes: An exploratory study[J]. Crit Care Med, 2016, 44(9):1695-1703.
doi: 10.1097/CCM.0000000000001815 URL |
[15] |
Luethi N, Cioccari L, Biesenbach P, et al. Liberal glucose control in ICU patients with diabetes: A before-and-after study[J]. Crit Care Med, 2018, 46(6):935-942.
doi: 10.1097/CCM.0000000000003087 pmid: 29509570 |
[16] | Poole AP, Finnis ME, Anstey J, et al. Study protocol and statistical analysis plan for the liberal glucose control in critically ill patients with pre-existing type 2 diabetes (LUCID) trial[J]. Crit Care Resusc, 2020, 22(2):133-141. |
[17] |
Egi M, Krinsley JS, Maurer P, et al. Pre-morbid glycemic control modifies the interaction between acute hypoglycemia and mortality[J]. Int Care Med, 2016, 42(4):562-571.
doi: 10.1007/s00134-016-4216-8 URL |
[18] | van Keulen K, Knol W, Belitser SV, et al. Glucose variability during delirium in diabetic and non-diabetic intensive care unit patients: A prospective cohort study[J]. PLoS One, 2018, 13(11):e0205637. |
[19] |
Mifsud S, Schembri EL, Gruppetta M. Stress-induced hyperglycaemia[J]. Br J Hosp Med (Lond), 2018, 79(11):634-639.
doi: 10.12968/hmed.2018.79.11.634 URL |
[20] |
Krinsley JS, Maurer P, Holewinski S, et al. Glucose control, diabetes status, and mortality in critically ill patients: the continuum from intensive care unit admission to hospital discharge[J]. Mayo Clin Proc, 2017, 92(7):1019-1029.
doi: S0025-6196(17)30320-8 pmid: 28645517 |
[21] |
Lanspa MJ, Krinsley JS, Hersh AM, et al. Percentage of time in range 70 to 139 mg/dL is associated with reduced mortality among critically ill patients receiving IV insulin infusion[J]. Chest, 2019, 156(5):878-886.
doi: 10.1016/j.chest.2019.05.016 URL |
[22] | Papachristoforou E, Lambadiari V, Maratou E, et al. Association of glycemic indices (hyperglycemia, glucose variability, and hypoglycemia) with oxidative stress and diabetic complications[J]. J Diabetes Res, 2020, 2020:7489795. |
[23] | Hsu CW, Sun SF, Lin HS. Glycemic variability in critically ill patients: Risk factors and association with mortality[J]. Chin Med J (Engl), 2020, 133(10):1255-1256. |
[24] |
Krinsley JS, Egi M, Kiss A, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: An international multicenter cohort study[J]. Crit Care, 2013, 17(2):R37.
doi: 10.1186/cc12547 URL |
[25] |
Fabbri A, Marchesini G, Benazzi B, et al. Stress hyperglycemia and mortality in subjects with diabetes and sepsis[J]. Crit Care Explor, 2020, 2(7):e0152.
doi: 10.1097/CCE.0000000000000152 URL |
[26] |
Rau CS, Wu SC, Chen YC, et al. Stress-induced hyperglycemia in diabetes: A cross-sectional analysis to explore the definition based on the trauma registry data[J]. Int J Environ Res Public Health, 2017, 14(12):1527.
doi: 10.3390/ijerph14121527 URL |
[27] |
Chu J, Tang J, Lai Y, et al. Association of stress hyperglycemia ratio with intracoronary thrombus burden in diabetic patients with ST-segment elevation myocardial infarction[J]. J Thorac Dis, 2020, 12(11):6598-6608.
doi: 10.21037/jtd URL |
[28] |
Nathan DM, Kuenen J, Borg R, et al. Translating the A1C assay into estimated average glucose values[J]. Diabetes Care, 2008, 31(8):1473-1478.
doi: 10.2337/dc08-0545 pmid: 18540046 |
[29] |
Liang Y, Wanderer J, Nichols JH, et al. Blood gas analyzer accuracy of glucose measurements[J]. Mayo Clin Proc, 2017, 92(7):1030-1041.
doi: 10.1016/j.mayocp.2017.03.009 URL |
[30] |
Stadlbauer V, Wallner S, Stojakovic T, et al. Comparison of 3 different multianalyte point-of-care devices during clinical routine on a medical intensive care unit[J]. J Crit Care, 2011, 26(4):433.e1-e11.
doi: 10.1016/j.jcrc.2010.09.003 URL |
[31] |
Cembrowski G, Jung J, Mei J, et al. Five-year two-center retrospective comparison of central laboratory glucose to GEM 4000 and ABL 800 blood glucose: Demonstrating the (In)adequacy of blood gas glucose[J]. J Diabetes Sci Technol, 2020, 14(3):535-545.
doi: 10.1177/1932296819883260 pmid: 31686527 |
[32] | 胥小芳, 孙红, 李春燕, 等. 《动脉血气分析临床操作实践标准》要点解读[J]. 中国护理管理, 2017, 17(9):1158-1161. |
[33] |
Le HT, Harris NS, Estilong AJ, et al. Blood glucose measurement in the intensive care unit: What is the best method?[J]. J Diabetes Sci Technol, 2013, 7(2):489-499.
doi: 10.1177/193229681300700226 URL |
[34] |
Montero AR, Dubin JS, Sack P, et al. Future technology-enabled care for diabetes and hyperglycemia in the hospital setting[J]. World J Diabetes, 2019, 10(9):473-480.
doi: 10.4239/wjd.v10.i9.473 pmid: 31558981 |
[35] |
Bruen D, Delaney C, Florea L, et al. Glucose sensing for diabetes monitoring: Recent developments[J]. Sensors (Basel), 2017, 17(8):1866.
doi: 10.3390/s17081866 URL |
[36] | 中华医学会糖尿病学分会. 中国持续葡萄糖监测临床应用指南(2017年版)[J]. 中华糖尿病杂志, 2017, 9(11):667-675. |
[37] |
Schierenbeck F, Franco-Cereceda A, Liska J. Accuracy of 2 different continuous glucose monitoring systems in patients undergoing cardiac surgery[J]. J Diabetes Sci Technol, 2017, 11:108-116.
doi: 10.1177/1932296816651632 pmid: 27257168 |
[38] | 余洁, 丁亚萍, 许勤, 等. 一种连续动脉血糖监测设备的创新思路及设计方案[J]. 中华危重病急救医学, 2019, 31(7):906-909. |
[39] |
Wallia A, Umpierrez GE, Rushakoff RJ, et al. Consensus statement on inpatient use of continuous glucose monitoring[J]. J Diabetes Sci Technol, 2017, 11(5):1036-1044.
doi: 10.1177/1932296817706151 URL |
[40] | Furnary AP, Wu Y, Bookin SO. Effect of hyperglycemia and continuous intravenous insulin infusions on outcomes of cardiac surgical procedures: the Portland Diabetic Project[J]. Endocr Pract, 2004, 10(Suppl 2):21-33. |
[41] |
Avanzini F, Marelli G, Saltafossi D, et al. Effectiveness, safety and feasibility of an evidence-based insulin infusion protocol targeting moderate glycaemic control in intensive cardiac care units[J]. Eur Heart J Acute Cardiovasc Care, 2016, 5(2):117-124.
doi: 10.1177/2048872615574110 pmid: 25735300 |
[42] |
Clergeau A, Parienti JJ, Reznik Y, et al. Impact of a paper-based dynamic insulin infusion protocol on glycemic variability, time in target, and hypoglycemic risk: a stepped wedge trial in medical intensive care unit patients[J]. Diabetes Technol Ther, 2017, 19(2):115-123.
doi: 10.1089/dia.2016.0314 URL |
[43] | 郁慧杰, 张玲芳, 许嵩翱, 等. 血糖控制胰岛素用量调节卡尺对急危重患者的血糖控制[J]. 中华危重病急救医学, 2018, 30(8):771-776. |
[44] |
Alamri N, Seley JJ. Evaluation of several electronic glycemic management systems[J]. J Diabetes Sci Technol, 2018, 12(1):60-62.
doi: 10.1177/1932296817751748 URL |
[45] |
Fogel SL, Baker CC. Effects of computerized decision support systems on blood glucose regulation in critically ill surgical patients[J]. J Am Coll Surg, 2013, 216(4):828-835.
doi: 10.1016/j.jamcollsurg.2012.12.015 URL |
[46] |
Tanenberg RJ, Hardee S, Rothermel C, et al. Use of a computer-guided glucose management system to improve glycemic control and address national quality measures: a 7-year, retrospective observational study at a tertiary care teaching hospital[J]. Endocr Pract, 2017, 23(3):331-341.
doi: 10.4158/EP161402.OR pmid: 27967226 |
[1] | 吕莎莎, 宋金兰, 石健. m.3243A>G突变相关线粒体糖尿病1例并文献复习[J]. 临床荟萃, 2024, 39(2): 160-163. |
[2] | 周正新, 梁秋雄, 陈江瑛. 胰高血糖素样肽-1在帕金森病“肠-脑轴”中的作用研究进展[J]. 临床荟萃, 2023, 38(9): 855-858. |
[3] | 江黎晨, 章秋, 胡红琳. Apelin在多囊卵巢综合征中的研究进展[J]. 临床荟萃, 2023, 38(3): 285-288. |
[4] | 韩拓, 王丽霞, 王怡雯, 李盈, 巩红, 张春艳, 张岩, 李永勤, 王聪霞. 健康人群中膳食营养素摄入与血糖及胰岛素抵抗相关性分析[J]. 临床荟萃, 2023, 38(2): 126-131. |
[5] | 饶小娟, 史双伟, 桑艳红. 德谷门冬双胰岛素与门冬胰岛素持续皮下输注治疗非内分泌科糖尿病患者的短期疗效比较[J]. 临床荟萃, 2023, 38(2): 132-136. |
[6] | 任玉梅, 章秋, 胡红琳. 多囊卵巢综合征患者血清S100A4水平变化及其对多囊卵巢综合征的影响[J]. 临床荟萃, 2023, 38(12): 1078-1085. |
[7] | 熊璐, 郭莲. 胰岛素样生长因子-1及其结合蛋白与非酒精性脂肪性肝病发生发展的研究进展[J]. 临床荟萃, 2023, 38(10): 935-939. |
[8] | 张上仕, 朱红艳, 李楠, 陈鹰熙. 冠心病合并2型糖尿病患者冠状动脉病变与胰岛素抵抗的相关性分析[J]. 临床荟萃, 2023, 38(1): 46-49. |
[9] | 杨静静, 黄帅, 吴倩, 赵丽丽, 蒋影. 胰高血糖素样肽-1受体激动剂治疗肥胖的研究进展[J]. 临床荟萃, 2022, 37(5): 477-480. |
[10] | 杨旻星, 庄姝洁, 韩文娟, 张海云, 叶赟. 低纤维肠内营养素对糖尿病患者肠道准备质量、血糖及舒适度的影响[J]. 临床荟萃, 2022, 37(4): 349-353. |
[11] | 齐琪, 江黎晨, 孙蓉, 胡红琳, 章秋. 妊娠中晚期孕妇血清Gremlin1水平变化及其对妊娠期糖尿病的影响[J]. 临床荟萃, 2022, 37(3): 257-261. |
[12] | 张如阳, 冯倩. 中老年焦虑障碍与胰岛素抵抗相关性[J]. 临床荟萃, 2021, 36(8): 708-712. |
[13] | 杨静静, 戎成振, 蒋影, 曹秀菁. β细胞替代治疗1型糖尿病的研究进展[J]. 临床荟萃, 2021, 36(8): 761-764. |
[14] | 王朦朦, 王颖, 陈赵静, 徐贤荣, 杨军, 李红娟. 门冬胰岛素联合维生素D治疗对妊娠期糖尿病患者血糖水平及围产儿并发症影响Meta分析[J]. 临床荟萃, 2021, 36(7): 581-586. |
[15] | 李蕾, 阿勒滕齐齐格, 张明琛, 蒋升. 胰高血糖素样肽-1受体激动剂治疗多囊卵巢综合征患者有效性与安全性的Meta分析[J]. 临床荟萃, 2021, 36(5): 395-401. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||