临床荟萃 ›› 2022, Vol. 37 ›› Issue (11): 977-984.doi: 10.3969/j.issn.1004-583X.2022.11.003
姜焱1a,b, 李佳阳1c, 伍红瑜2, 陈保林1a,b, 程晓明1a,b, 吕俊远1a,b()
收稿日期:
2022-03-14
出版日期:
2022-11-20
发布日期:
2023-01-02
通讯作者:
吕俊远
E-mail:junyuanlv@zmu.edu.cn
Jiang Yan1a,b, Li Jiayang1c, Wu Hongyu2, Chen Baolin1a,b, Cheng Xiaoming1a,b, Lyu Junyuan1a,b()
Received:
2022-03-14
Online:
2022-11-20
Published:
2023-01-02
Contact:
Lyu Junyuan
E-mail:junyuanlv@zmu.edu.cn
摘要:
目的 探MDM4rs4245739基因多态性与乳腺癌易感性之间的相关性。方法 在PubMed、EMBASE、Cochrane Library、中国知识基础设施数据库和万方电子数据库中检索MDM4rs4245739基因多态性与乳腺癌易感性的相关文献。用比值比和95%置信区间来评估相关性的强度。采用Begg's漏斗图和Egger's线性回归检验来评价发表偏倚。结果 本研究共纳入6项研究,包括9 814名乳腺癌患者和45 202名健康对照者。MDM4rs4245739在等位基因模型(C vs A: OR=0.84, 95%CI: 0.67-1.05, P=0.118)、显性基因模型(AC+CC vs AA: OR=0.86, 95% CI: 0.67-1.11, P=0.245)、隐性基因模型 (AC+AA vs CC: OR =0.90, 95%CI: 0.61-1.32, P=0.585)、杂合子模型 (AC vs AA: OR=0.88, 95%CI: 0.69-1.12, P=0.305)、纯合子模型(CC vs AA: OR =0.90, 95%CI: 0.59-1.39, P=0.649)中均提示其与乳腺癌易感性无相关性。同时,GEPIA数据库亦证实MDM4的表达水平与乳腺癌的肿瘤分期及预后无关。结论 MDM4rs4245739基因多态性和MDM4的表达水平与乳腺癌患者的易感性和预后均无关。
中图分类号:
姜焱, 李佳阳, 伍红瑜, 陈保林, 程晓明, 吕俊远. MDM4rs4245739基因多态性与乳腺癌易感性的meta分析[J]. 临床荟萃, 2022, 37(11): 977-984.
Jiang Yan, Li Jiayang, Wu Hongyu, Chen Baolin, Cheng Xiaoming, Lyu Junyuan. MDM4rs4245739 gene polymorphism and breast cancer susceptibility:A meta-analysis[J]. Clinical Focus, 2022, 37(11): 977-984.
第一作者 | 年份 | 地区 | 种族 | 病例/对照数 | 病例组 | 对照组 | SOC | HWE | NOS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AC | CC | AA | AC | CC | |||||||||
Liu et al[ | 2013 | 中国 | 非高加索人 | 800/800 | 733 | 67 | 0 | 686 | 111 | 3 | PB | 0.505 | 6 | |
Liu et al[ | 2013 | 中国 | 非高加索人 | 300/600 | 278 | 22 | 0 | 501 | 96 | 3 | PB | 0.483 | 6 | |
Hashemi et al[ | 2018 | 伊朗 | 非高加索人 | 265/221 | 175 | 83 | 7 | 142 | 70 | 9 | HB | 0.919 | 5 | |
Montserrat et al[ | 2013 | 混合 | 高加索人 | 6 512/41 451 | 3 318 | 2 637 | 557 | 22 825 | 15 798 | 2 828 | Mixed | 0.183 | 5 | |
Gansmo et al[ | 2015 | 挪威 | 高加索人 | 1 717/1 870 | 966 | 643 | 108 | 1 021 | 703 | 146 | PB | 0.106 | 6 | |
Pedram et al[ | 2016 | 伊朗 | 非高加索人 | 220/260 | 123 | 87 | 10 | 165 | 81 | 14 | HB | 0.335 | 6 |
表1 纳入文献的基本特征
第一作者 | 年份 | 地区 | 种族 | 病例/对照数 | 病例组 | 对照组 | SOC | HWE | NOS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AA | AC | CC | AA | AC | CC | |||||||||
Liu et al[ | 2013 | 中国 | 非高加索人 | 800/800 | 733 | 67 | 0 | 686 | 111 | 3 | PB | 0.505 | 6 | |
Liu et al[ | 2013 | 中国 | 非高加索人 | 300/600 | 278 | 22 | 0 | 501 | 96 | 3 | PB | 0.483 | 6 | |
Hashemi et al[ | 2018 | 伊朗 | 非高加索人 | 265/221 | 175 | 83 | 7 | 142 | 70 | 9 | HB | 0.919 | 5 | |
Montserrat et al[ | 2013 | 混合 | 高加索人 | 6 512/41 451 | 3 318 | 2 637 | 557 | 22 825 | 15 798 | 2 828 | Mixed | 0.183 | 5 | |
Gansmo et al[ | 2015 | 挪威 | 高加索人 | 1 717/1 870 | 966 | 643 | 108 | 1 021 | 703 | 146 | PB | 0.106 | 6 | |
Pedram et al[ | 2016 | 伊朗 | 非高加索人 | 220/260 | 123 | 87 | 10 | 165 | 81 | 14 | HB | 0.335 | 6 |
分组 | 数量 | C vs A | AC+CC vs AA | AC+AA vs CC | AC vs AA | CC vs AA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
种族 | |||||||||||||||
非高加索人 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
高加索人 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.63)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
地区 | |||||||||||||||
亚洲 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
欧洲 | 1 | 0.92(0.83-1.02) | 0.116 | 0.93(0.82-1.06) | 0.292 | 0.79(0.61-1.03) | 0.080 | 0.96(0.84-1.11) | 0.590 | 0.78(0.60-1.02) | 0.068 | ||||
混合 | 1 | 1.16(1.11-1.21) | 0.000 | 1.18(1.12-1.24) | 0.000 | 1.28(1.16-1.41) | 0.000 | 1.15(1.09-1.21) | 0.000 | 1.36(1.23-1.49) | 0.000 | ||||
样本量 | |||||||||||||||
>1 000 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.63)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
<1 000 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
基因分型检测方法 | |||||||||||||||
PCR-RFLP | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
其他 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.24)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
健康对照者来源 | |||||||||||||||
PB | 3 | 0.62(0.38-1.01)* | 0.054 | 0.61(0.37-1.02)* | 0.060 | 0.78(0.60-1.01)# | 0.054 | 0.63(0.38-1.05)* | 0.079 | 0.77(0.59-0.99)# | 0.044 | ||||
HB | 2 | 1.00(0.80-1.25)# | 0.976 | 1.13(0.77-1.66)* | 0.542 | 0.75(0.40-1.42)# | 0.378 | 1.18(0.79-1.75)* | 0.415 | 0.81(0.42-1.54)# | 0.518 | ||||
混合 | 1 | 1.16(1.11-1.21) | 0.000 | 1.18(1.12-1.24) | 0.000 | 1.28(1.16-1.41) | 0.000 | 1.15(1.09-1.21) | 0.000 | 1.35(1.23-1.49) | 0.000 | ||||
总共 | 6 | 0.84(0.67-1.05)* | 0.118 | 0.86(0.67-1.11)* | 0.245 | 0.90(0.61-1.32)* | 0.585 | 0.88(0.69-1.12)* | 0.305 | 0.90(0.59-1.40)* | 0.649 |
表2 亚组分析结果
分组 | 数量 | C vs A | AC+CC vs AA | AC+AA vs CC | AC vs AA | CC vs AA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
种族 | |||||||||||||||
非高加索人 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
高加索人 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.63)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
地区 | |||||||||||||||
亚洲 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
欧洲 | 1 | 0.92(0.83-1.02) | 0.116 | 0.93(0.82-1.06) | 0.292 | 0.79(0.61-1.03) | 0.080 | 0.96(0.84-1.11) | 0.590 | 0.78(0.60-1.02) | 0.068 | ||||
混合 | 1 | 1.16(1.11-1.21) | 0.000 | 1.18(1.12-1.24) | 0.000 | 1.28(1.16-1.41) | 0.000 | 1.15(1.09-1.21) | 0.000 | 1.36(1.23-1.49) | 0.000 | ||||
样本量 | |||||||||||||||
>1 000 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.63)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
<1 000 | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
基因分型检测方法 | |||||||||||||||
PCR-RFLP | 4 | 0.70(0.46-1.06)* | 0.093 | 0.74(0.44-1.22)* | 0.236 | 0.67(0.36-1.24)# | 0.200 | 0.76(0.45-1.28)* | 0.302 | 0.71(0.38-1.32)# | 0.279 | ||||
其他 | 2 | 1.04(0.83-1.30)* | 0.753 | 1.06(0.84-1.33)* | 0.639 | 1.02(0.64-1.24)* | 0.923 | 1.06(0.90-1.26)* | 0.478 | 1.04(0.61-1.79)* | 0.876 | ||||
健康对照者来源 | |||||||||||||||
PB | 3 | 0.62(0.38-1.01)* | 0.054 | 0.61(0.37-1.02)* | 0.060 | 0.78(0.60-1.01)# | 0.054 | 0.63(0.38-1.05)* | 0.079 | 0.77(0.59-0.99)# | 0.044 | ||||
HB | 2 | 1.00(0.80-1.25)# | 0.976 | 1.13(0.77-1.66)* | 0.542 | 0.75(0.40-1.42)# | 0.378 | 1.18(0.79-1.75)* | 0.415 | 0.81(0.42-1.54)# | 0.518 | ||||
混合 | 1 | 1.16(1.11-1.21) | 0.000 | 1.18(1.12-1.24) | 0.000 | 1.28(1.16-1.41) | 0.000 | 1.15(1.09-1.21) | 0.000 | 1.35(1.23-1.49) | 0.000 | ||||
总共 | 6 | 0.84(0.67-1.05)* | 0.118 | 0.86(0.67-1.11)* | 0.245 | 0.90(0.61-1.32)* | 0.585 | 0.88(0.69-1.12)* | 0.305 | 0.90(0.59-1.40)* | 0.649 |
协变量 | N | C vs A | AC+CC vs AA | AC+AA vs CC | AC vs AA | CC vs AA |
---|---|---|---|---|---|---|
种族 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
地区 | 3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本量 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
基因分型检测方法 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
健康对照者来源 | 3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
表3 Meta回归结果
协变量 | N | C vs A | AC+CC vs AA | AC+AA vs CC | AC vs AA | CC vs AA |
---|---|---|---|---|---|---|
种族 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
地区 | 3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本量 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
基因分型检测方法 | 2 | 0.201 | 0.341 | 0.244 | 0.388 | 0.301 |
健康对照者来源 | 3 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 71(3): 209-249.
doi: 10.3322/caac.21660 URL |
[2] |
Lilyquist J, Ruddy KJ, Vachon CM, et al. Common genetic variation and breast cancer risk-past, present, and future[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(4): 380-394.
doi: 10.1158/1055-9965.EPI-17-1144 URL |
[3] |
Rudolph A, Chang-Claude J, Schmidt MK. Gene-environment interaction and risk of breast cancer[J]. Br J Cancer, 2016, 114(4): 125-133.
doi: 10.1038/bjc.2015.439 URL |
[4] |
Rahman N. Realizing the promise of cancer predisposition genes[J]. Nature, 2014, 505(7483): 302-308.
doi: 10.1038/nature12981 URL |
[5] |
Haupt S, Vijayakumaran R, Miranda PJ, et al. The role of MDM2 and MDM4 in breast cancer development and prevention[J]. J Mol Cell Biol, 2017, 9(1):53-61.
doi: 10.1093/jmcb/mjx007 pmid: 28096293 |
[6] |
Stegeman S, Moya L, Selth LA, et al. A genetic variant of MDM4 influences regulation by multiple microRNAs in prostate cancer[J]. Endocr Relat Cancer, 2015, 22(2): 265-276.
doi: 10.1530/ERC-15-0013 URL |
[7] |
Liu J, Tang X, Li M, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility[J]. Breast Cancer Res Treat, 2013, 140(1): 151-157.
doi: 10.1007/s10549-013-2615-x URL |
[8] |
Hashemi M, Sanaei S, Hashemi SM, et al. Association of single nucleotide polymorphisms of the MDM4 gene with the susceptibility to breast cancer in a Southeast Iranian population sample[J]. Clin Breast Cancer, 2018, 18(5): e883-e891.
doi: 10.1016/j.clbc.2018.01.003 URL |
[9] | Wang YX, Yang Z, Chang XL, et al. Five MDM4 gene polymorphisms on cancer risk: An updated systematic review and meta-analysis[J]. Int J Biol Markers, 2021, 36(2): 17246008211033874. |
[10] |
Montserrat GC, Couch FJ, Lindstrom S, et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci[J]. Nat Genet, 2013, 45(4): 392-398e2.
doi: 10.1038/ng.2561 URL |
[11] |
Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605.
doi: 10.1007/s10654-010-9491-z pmid: 20652370 |
[12] |
Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis[J]. Stat Med, 2002, 21(11): 1539-1558.
doi: 10.1002/sim.1186 pmid: 12111919 |
[13] |
Peters JL, Sutton AJ, Jones DR, et al. Comparison of two methods to detect publication bias in meta-analysis[J]. JAMA, 2006, 295(6): 676-680.
doi: 10.1001/jama.295.6.676 pmid: 16467236 |
[14] | Jin X, Zhao W, Zheng M, et al. The role of MDM4 SNP34091 A>C polymorphism in cancer: A meta-analysis on 19, 328 patients and 51, 058 controls[J]. Int J Biol Markers, 2017, 32(1): e62-e67. |
[15] |
Wang MJ, Luo Y J, Shi ZY, et al. The associations between MDM4 gene polymorphisms and cancer risk[J]. Oncotarget, 2016, 7(34): 55611-55623.
doi: 10.18632/oncotarget.10877 URL |
[16] |
Zhai Y, Dai Z, He H, et al. A PRISMA-compliant meta-analysis of MDM4 genetic variants and cancer susceptibility[J]. Oncotarget, 2016, 7(45): 73935-73944.
doi: 10.18632/oncotarget.12558 pmid: 27738340 |
[17] | Song CG, Fu FM, Wu XY, et al. Correlation of polymorphism rsl563828 in MDM4 gene with breast cancer risk and onset age[J]. Chin J Surg, 2012, 50(1): 53-56. |
[18] |
Atwal GS, Kirchhoff T, Bond EE, et al. Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene[J]. Proc Natl Acad Sci USA, 2009, 106(25): 10236-10241.
doi: 10.1073/pnas.0901298106 URL |
[19] |
Bauer M, Kantelhardt EJ, Stiewe T, et al. Specific allelic variants of SNPs in the MDM2 and MDMX genes are associated with earlier tumor onset and progression in Caucasian breast cancer patients[J]. Oncotarget, 2019, 10(20): 1975-1992.
doi: 10.18632/oncotarget.26768 URL |
[20] |
Vulsteke C, Lambrechts D, Dieudonne A, et al. Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC)[J]. Ann Oncol, 2013, 24(6): 1513-1525.
doi: 10.1093/annonc/mdt008 pmid: 23396606 |
[21] |
Kulkarni DA, Vazquez A, Haffty BG, et al. A polymorphic variant in human MDM4 associates with accelerated age of onset of estrogen receptor negative breast cancer[J]. Carcinogenesis, 2009, 30(11): 1910-1915.
doi: 10.1093/carcin/bgp224 pmid: 19762336 |
[22] | Joseph V, Gaudet M, Devlin V, et al. Genetic variation of human MDM4 confers increased risk for breast cancer in the Ashkenazi Jewish population[J]. Curr Oncol, 2009, 16(5): 97. |
[23] |
Reincke S, Govbakh L, Wilhelm B, et al. Mutation analysis of the MDM4 gene in German breast cancer patients[J]. BMC cancer, 2008, 8: 52.
doi: 10.1186/1471-2407-8-52 pmid: 18279506 |
[24] |
Bartnykaite A, Savukaityte A, Ugenskiene R, et al. Associations of MDM2 and MDM4 polymorphisms with early-stage breast cancer[J]. J Clin Med, 2021, 10(4): 866.
doi: 10.3390/jcm10040866 URL |
[25] |
Gansmo LB, Romundstad P, Birkeland E, et al. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk[J]. Cancer med, 2015, 4(12): 1901-1907.
doi: 10.1002/cam4.555 URL |
[26] |
Pedram N, Pouladi N, Feizi MA, et al. Analysis of the Association between MDM4 rs4245739 single nucleotide polymorphism and breast cancer susceptibility[J]. Clin lab, 2016, 62(7): 1303-1308.
doi: 10.7754/Clin.Lab.2016.151128 pmid: 28164646 |
[27] |
Dai X, Li T, Bai Z, et al. Breast cancer intrinsic subtype classification, clinical use and future trends[J]. Am J Cancer Res, 2015, 5(10): 2929-2943.
pmid: 26693050 |
[1] | 龚财芳, 赵俊宇, 游川. 接纳与承诺疗法对癌症患者心理健康和生活质量影响的meta分析[J]. 临床荟萃, 2024, 39(2): 101-107. |
[2] | 肖煌怡, 袁建坤, 严梓予, 曾雯姝, 鲁兰莫, 王峻. 认知干预对遗忘型轻度认知障碍老年患者干预效果的meta分析[J]. 临床荟萃, 2024, 39(1): 12-19. |
[3] | 吕畅, 周利明. TNF-α-308基因多态性与胃癌易感相关性的meta分析[J]. 临床荟萃, 2023, 38(9): 779-787. |
[4] | 李海, 刘文虎, 彭绍鹏, 王飞. 控制性阶梯式减压术对比快速标准大骨瓣减压术治疗重度颅脑损伤疗效的meta分析[J]. 临床荟萃, 2023, 38(9): 788-795. |
[5] | 侯有玲, 李奕, 关红玉, 罗红霞. 目标导向液体治疗在脑肿瘤切除术中应用效果的meta分析[J]. 临床荟萃, 2023, 38(8): 686-693. |
[6] | 金家辉, 杨阳, 秦铜, 何雨欣, 苏美华. 补充益生菌对2型糖尿病患者糖代谢改善的meta分析[J]. 临床荟萃, 2023, 38(7): 581-587. |
[7] | 肖王静, 李欣梦, 卢松玲, 孙雪华. 重复经颅磁刺激治疗中枢神经源性吞咽障碍疗效及安全性的meta分析[J]. 临床荟萃, 2023, 38(7): 588-599. |
[8] | 尤奕, 高淑清, 徐浩. 肠内营养对食管癌患者术后临床结局影响的系统综述[J]. 临床荟萃, 2023, 38(6): 485-492. |
[9] | 倪艺芸, 刘彬, 梁琪, 李晓凤. 白细胞介素6和C反应蛋白预测新型冠状病毒肺炎严重程度的meta分析[J]. 临床荟萃, 2023, 38(6): 493-499. |
[10] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[11] | 赵哲, 穆培娟, 张冬. 恩度联合顺铂胸腔灌注治疗肺癌合并恶性胸腔积液疗效的meta分析[J]. 临床荟萃, 2023, 38(5): 399-404. |
[12] | 马明福, 魏志国, 何铁英. 急性胰腺炎并发胰腺假性囊肿危险因素的meta分析[J]. 临床荟萃, 2023, 38(4): 293-301. |
[13] | 曹宇萌, 张海燕, 刘立新. 非酒精性脂肪性肝病的病理改变与血清铁蛋白和血清铁含量变化关系的meta分析[J]. 临床荟萃, 2023, 38(3): 197-207. |
[14] | 马宏莉, 陆皓, 王丹, 焦海星, 李一珂, 李思雨, 吕静. 脑卒中患者残疾危险因素的meta分析[J]. 临床荟萃, 2023, 38(2): 111-116. |
[15] | 陶嘉楠, 李文茜, 马秀雯, 安琪, 王学红. HER-2在肝细胞癌中表达及临床意义的meta分析[J]. 临床荟萃, 2023, 38(12): 1067-1072. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||