临床荟萃 ›› 2023, Vol. 38 ›› Issue (7): 659-662.doi: 10.3969/j.issn.1004-583X.2023.07.013
收稿日期:
2023-01-08
出版日期:
2023-07-20
发布日期:
2023-09-01
通讯作者:
山凤莲
E-mail:Shanfenglian@126.com
基金资助:
Received:
2023-01-08
Online:
2023-07-20
Published:
2023-09-01
摘要:
结核病是一种具有重大公共卫生威胁的感染性疾病,对机体的免疫功能产生重大影响。目前研究显示程序性细胞死亡受体-1(programmed cell death protein-1,PD-1)通过介导免疫调节参与慢性感染性疾病及癌症的发展等,并且PD-1抑制剂在临床中的应用已较为广泛。本文就近年来国内外对PD-1在结核病患者T淋巴细胞、B淋巴细胞、自然杀伤细胞上的表达研究进展做一概述。
中图分类号:
裴红运, 文洁, 山凤莲. 结核病患者淋巴细胞程序性细胞死亡受体-1表达变化的研究进展[J]. 临床荟萃, 2023, 38(7): 659-662.
[1] | World Health Organization. Global tuberculosis report 2019[R]. Geneva: WHO: 2019. |
[2] |
Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis[J]. Indian J Tuberc, 2020, 67(3):295-311.
doi: S0019-5707(20)30030-5 pmid: 32825856 |
[3] | 米洁, 薛勇, 白雪娟, 等. 淋巴细胞亚群检测在结核病诊疗中的应用进展[J]. 中国防痨杂志, 2021, 43(2):178-185. |
[4] |
Nakajima M, Matsuyama M, Kawaguchi M, et al. Depletion of PD-1 or PD-L1 did not affect the mortality of mice infected with Mycobacterium avium[J]. Sci Rep, 2021, 11(1):18008.
doi: 10.1038/s41598-021-97391-4 pmid: 34504192 |
[5] | Sia JK, Rengarajan J. Immunology of mycobacterium tuberculosis infections[J]. Microbiol Spectr, 2019, 7(4):10. |
[6] |
Marasco M, Berteotti A, Weyershaeuser J, et al. Molecular mechanism of SHP2 activation by PD-1 stimulation[J]. Sci Adv, 2020, 6(5):eaay4458.
doi: 10.1126/sciadv.aay4458 URL |
[7] |
Shen L, Gao Y, Liu Y, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4+ T-cell functions and phagocytosis of macrophages in active tuberculosis[J]. Sci Rep, 2016, 6:38362.
doi: 10.1038/srep38362 pmid: 27924827 |
[8] |
Day CL, Abrahams DA, Bunjun R, et al. PD-1 Expression on mycobacterium tuberculosis-specific CD4 T cells is associated with bacterial load in human tuberculosis[J]. Front Immunol, 2018, 9:1995.
doi: 10.3389/fimmu.2018.01995 URL |
[9] |
Liu X, Li F, Niu H, et al. IL-2 restores T-cell dysfunction induced by persistent mycobacterium tuberculosis antigen stimulation[J]. Front Immunol, 2019, 10:2350.
doi: 10.3389/fimmu.2019.02350 URL |
[10] |
Shen L, Shi H, Gao Y, et al. The characteristic profiles of PD-1 and PD-L1 expressions and dynamic changes during treatment in active tuberculosis[J]. Tuberculosis (Edinb), 2016, 101:146-150.
doi: 10.1016/j.tube.2016.10.001 URL |
[11] | Yang C, Dai F, Pulati R, et al. Clinical significance of negative costimulatory molecule PD-1/PD-L1 on peripheral blood regulatory T cell levels among patients with pulmonary tuberculosis[J]. J Trop Med, 2022, 2022:7526501. |
[12] |
Haddadi MH, Negahdari B. Clinical and diagnostic potential of regulatory T cell markers: From bench to bedside[J]. Transpl Immunol, 2022, 70:101518.
doi: 10.1016/j.trim.2021.101518 URL |
[13] |
Khalili A, Ebrahimpour S, Maleki I, et al. CD4+CD25+CD127low Foxp3+ regulatory T cells in Crohn's disease[J]. Rom J Intern Med, 2018, 56(3):158-166.
doi: 10.2478/rjim-2018-0006 pmid: 29453928 |
[14] |
Grover P, Goel PN, Greene MI. Regulatory T cells: Regulation of identity and function[J]. Front Immunol, 2021, 12:750542.
doi: 10.3389/fimmu.2021.750542 URL |
[15] |
Suarez GV, Melucci Ganzarain CDC, Vecchione MB, et al. PD-1/PD-L1 pathway modulates macrophage susceptibility to mycobacterium tuberculosis specific CD8+ T cell induced death[J]. Sci Rep, 2019, 9(1):187.
doi: 10.1038/s41598-018-36403-2 |
[16] |
Li J, Jin C, Wu C, et al. PD-1 modulating mycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy[J]. J Leukoc Biol, 2019, 106(3):733-747.
doi: 10.1002/JLB.MA1118-450RR URL |
[17] | Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases[J]. Nat Rev Immunol, 2018, 18(2):91104. |
[18] |
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355.
doi: 10.1126/science.aar4060 pmid: 29567705 |
[19] |
Singh A, Mohan A, Dey AB, et al. Programmed death-1+ T cells inhibit effector T cells at the pathological site of miliary tuberculosis[J]. Clin Exp Immunol, 2017, 187(2):269-283.
doi: 10.1111/cei.12871 pmid: 27665733 |
[20] |
Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates mycobacterium tuberculosis infection in rhesus macaques[J]. Sci Immunol, 2021, 6(55):eabf3861.
doi: 10.1126/sciimmunol.abf3861 URL |
[21] |
Liu Q, Ou Q, Shen L, et al. BATF potentially mediates negative regulation of PD-1/PD-Ls pathway on T Cell functions in mycobacterium tuberculosis Infection[J]. Front Immunol, 2019, 10:2430.
doi: 10.3389/fimmu.2019.02430 URL |
[22] |
Tousif S, Singh Y, Prasad DV, et al. T cells from programmed death-1 deficient mice respond poorly to mycobacterium tuberculosis infection[J]. PLoS One, 2011, 6(5):e19864.
doi: 10.1371/journal.pone.0019864 URL |
[23] |
Barber DL, Mayer-Barber KD, Feng CG, et al. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition[J]. J Immunol, 2011, 186(3):1598-1607.
doi: 10.4049/jimmunol.1003304 pmid: 21172867 |
[24] |
Sakai S, Kawamura I, Okazaki T, et al. PD-1-PD-L1 pathway impairs T(h)1 immune response in the late stage of infection with mycobacterium bovis bacillus calmette-guérin[J]. Int Immunol, 2010, 22(12):915-925.
doi: 10.1093/intimm/dxq446 pmid: 21047981 |
[25] |
Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy[J]. Sci Transl Med, 2019, 11(475):eaat2702.
doi: 10.1126/scitranslmed.aat2702 URL |
[26] |
Kawahara JY, Irvine EB, Alter G. A case for antibodies as mechanistic correlates of immunity in tuberculosis[J]. Front Immunol, 2019, 10:996.
doi: 10.3389/fimmu.2019.00996 pmid: 31143177 |
[27] |
Casadevall A. Antibody-based vaccine strategies against intracellular pathogens[J]. Curr Opin Immunol, 2018, 53:74-80.
doi: S0952-7915(18)30018-9 pmid: 29704764 |
[28] |
Rijnink WF, Ottenhoff THM, Joosten SA. B-cells and antibodies as contributors to effector immune responses in tuberculosis[J]. Front Immunol, 2021, 12:640168.
doi: 10.3389/fimmu.2021.640168 URL |
[29] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis[J]. J Infect Dis, 2013, 208(4):603-615.
doi: 10.1093/infdis/jit206 pmid: 23661793 |
[30] | 胥萍. PD-1/PD-L1在肺结核患者外周血淋巴细胞表面的表达特性及其生物学意义[C]. 江苏省第十八次感染病学学术会议论文集, 2016:78-78. |
[31] |
Albayrak N, Dirix V, Aerts L, et al. Differential expression of maturation and activation markers on NK cells in patients with active and latent tuberculosis[J]. J Leukoc Biol, 2022, 111(5):1031-1042.
doi: 10.1002/JLB.4A1020-641RR URL |
[32] | Kathamuthu GR, Kumar NP, Moideen K, et al. High dimensionality reduction and immune phenotyping of natural killer and invariant natural killer cells in latent tuberculosis-diabetes comorbidity[J]. J Immunol Res, 2022, 2022:2422790. |
[33] |
Junqueira-Kipnis AP, Trentini MM, Marques Neto LM, et al. Live vaccines have different NK cells and neutrophils requirements for the development of a protective immune response against tuberculosis[J]. Front Immunol, 2020, 11:741.
doi: 10.3389/fimmu.2020.00741 pmid: 32391021 |
[34] |
Hassan SS, Akram M, King EC, et al. PD-1, PD-L1 and PD-L2 gene expression on T-cells and natural killer cells declines in conjunction with a reduction in PD-1 protein during the intensive phase of tuberculosis treatment[J]. PLoS One, 2015, 10(9):e0137646.
doi: 10.1371/journal.pone.0137646 URL |
[35] |
Alvarez IB, Pasquinelli V, Jurado JO, et al. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against mycobacterium tuberculosis[J]. J Infect Dis, 2010, 202(4):524-532.
doi: 10.1086/654932 pmid: 20617899 |
[1] | 刘蕾, 李明武, 万荣. 肺结核合并肺栓塞患者实验室指标的诊断价值[J]. 临床荟萃, 2024, 39(2): 134-139. |
[2] | 刘婉琦, 樊树芹, 庄瑞雪, 贺峰, 刘振川, 解忠祥. 成人水痘-带状疱疹病毒相关颅内感染5例临床分析[J]. 临床荟萃, 2024, 39(2): 149-154. |
[3] | 谷翠红, 王阳, 林丽, 王丽红, 张志华. 抗胸腺细胞球蛋白联合环孢素A治疗儿童重型再生障碍性贫血诱发毛细血管渗透综合征1例[J]. 临床荟萃, 2023, 38(9): 819-322. |
[4] | 武锐锋, 刘宇宏. PDZ结合激酶/T淋巴细胞因子激活的杀伤细胞源性蛋白激酶的作用机制及其在肿瘤治疗中的潜在价值[J]. 临床荟萃, 2023, 38(8): 763-768. |
[5] | 辛燕红, 郎桂艳, 陈子为, 王东玉. 中性粒细胞-淋巴细胞比值和血小板-淋巴细胞比值预测急性轻型缺血性脑卒中患者认知障碍的价值[J]. 临床荟萃, 2023, 38(6): 504-509. |
[6] | 沃拉孜汗·玛德尼亚提, 迪力夏提·图尔迪麦麦提, 李梦晨, 拜合提尼沙·吐尔地. 宏基因组二代测序技术在肺结核诊断中应用价值的meta分析[J]. 临床荟萃, 2023, 38(5): 389-398. |
[7] | 冷婉铜, 陶洁. 多发性骨髓瘤患者治疗后发生静脉血栓栓塞的危险因素[J]. 临床荟萃, 2023, 38(4): 340-345. |
[8] | 刘晔, 阮桂仁, 刘晓清, 侍效春, 费贵军. 胰腺结核的诊断及鉴别诊断[J]. 临床荟萃, 2023, 38(10): 898-903. |
[9] | 王珍珍, 赵仕一, 冯鸶然, 马博清. 中性粒细胞和淋巴细胞比值预测2型糖尿病患者微量白蛋白尿的价值[J]. 临床荟萃, 2022, 37(9): 808-812. |
[10] | 张月月, 谢美芳, 孙艮. 类风湿关节炎合并T-细胞大颗粒淋巴细胞白血病1例及文献复习[J]. 临床荟萃, 2022, 37(8): 728-732. |
[11] | 罗伟刚, 尹园园, 任慧玲. 原发性脊柱感染的分析和治疗[J]. 临床荟萃, 2022, 37(6): 525-529. |
[12] | 王家琦, 高曼, 张飞飞, 李英肖, 党懿, 齐晓勇. 中性粒细胞与淋巴细胞比值联合GRACE评分对急性STEMI患者PCI术后发生院内主要不良心血管事件的预测价值[J]. 临床荟萃, 2022, 37(5): 412-417. |
[13] | 李扬帆, 李健. 61例视神经脊髓炎谱系疾病临床特点、NLR、ELR对疾病严重程度的影响[J]. 临床荟萃, 2022, 37(5): 431-436. |
[14] | 徐敬然, 李菲菲, 解承鑫, 弓慧, 栾其昀, 李黎. 径向超声支气管镜联合快速现场评估在细菌学阴性肺结核诊断中的应用[J]. 临床荟萃, 2022, 37(3): 220-224. |
[15] | 李莹莹, 李婷, 张铭, 范明华, 邢广群. CD4+ T淋巴细胞计数在慢性肾衰竭患者衰弱状态评价中的监测意义[J]. 临床荟萃, 2022, 37(3): 243-247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||