临床荟萃 ›› 2023, Vol. 38 ›› Issue (8): 749-752.doi: 10.3969/j.issn.1004-583X.2023.08.013
收稿日期:
2023-02-24
出版日期:
2023-08-20
发布日期:
2023-09-28
通讯作者:
孔维香
E-mail:kwx2797@163.com
基金资助:
Received:
2023-02-24
Online:
2023-08-20
Published:
2023-09-28
摘要:
慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)是一种多因素疾病, 其主要危险因素是烟雾暴露和衰老。既往研究证明,端粒过度缩短作为COPD患者加速衰老的标志,在COPD的发生、发展中发挥重要作用。在参与COPD发病的氧化应激、炎症反应过程中均能发现端粒的缩短。端粒酶逆转录酶是决定端粒长度的关键因素,其基因突变、缺失及单核苷酸多态性也被证明与COPD的不良临床结局密切相关。本文通过对端粒及端粒酶逆转录酶基因与COPD相关性的研究进展进行综述,旨在为临床提供依据。
中图分类号:
武颖颖, 孔维香. 端粒及端粒酶逆转录酶基因与慢性阻塞性肺疾病相关性的研究进展[J]. 临床荟萃, 2023, 38(8): 749-752.
[1] | Agarwal AK, Raja A, Brown BD. Chronic obstructive pulmonary disease[M]. Treasure Island (FL): StatPearls, 2023. |
[2] |
Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
doi: 10.1016/S0140-6736(20)30925-9 pmid: 33069326 |
[3] |
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study[J]. Lancet, 2018, 391(10131): 1706-1717.
doi: S0140-6736(18)30841-9 pmid: 29650248 |
[4] |
Wu CT, Li GH, Huang CT, et al. Acute exacerbation of a chronic obstructive pulmonary disease prediction system using wearable device data, machine learning, and deep learning: Development and cohort study[J]. JMIR Mhealth Uhealth, 2021, 9(5): e22591.
doi: 10.2196/22591 URL |
[5] |
Tacheva T, Zienolddiny S, Dimov D, et al. The leukocyte telomere length, single nucleotide polymorphisms near TERC gene and risk of COPD[J]. PeerJ, 2021, 9: e12190.
doi: 10.7717/peerj.12190 URL |
[6] |
Erichsen L, Kloss LDF, Thimm C, et al. Derivation of the immortalized cell line UM51-PrePodo-hTERT and its responsiveness to angiotensin II and activation of the RAAS pathway[J]. Cells, 2023, 12(3): 342.
doi: 10.3390/cells12030342 URL |
[7] |
Aghali A, Khalfaoui L, Lagnado AB, et al. Cellular senescence is increased in airway smooth muscle cells of elderly persons with asthma[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 323(5): L558-L568.
doi: 10.1152/ajplung.00146.2022 URL |
[8] |
Duckworth A, Gibbons MA, Allen RJ, et al. Telomere length and risk of idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease: A mendelian randomisation study[J]. Lancet Respir Med, 2021, 9(3): 285-294.
doi: 10.1016/S2213-2600(20)30364-7 pmid: 33197388 |
[9] |
Zhang D, Newton CA, Wang B, et al. Utility of whole genome sequencing in assessing risk and clinically relevant outcomes for pulmonary fibrosis[J]. Eur Respir J, 2022, 60(6): 2200577.
doi: 10.1183/13993003.00577-2022 URL |
[10] |
Lee EY, Lin J, Noth EM, et al. Traffic-related air pollution and telomere length in children and adolescents living in Fresno, CA: A pilot study[J]. J Occup Environ Med, 2017, 59(5): 446-452.
doi: 10.1097/JOM.0000000000000996 pmid: 28486341 |
[11] |
Doherty JA, Grieshober L, Houck JR, et al. Telomere length and lung cancer mortality among heavy smokers[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27(7): 829-837.
doi: 10.1158/1055-9965.EPI-17-1183 URL |
[12] |
Liu B, He Y, Wang Y, et al. Structure of active human telomerase with telomere shelterin protein TPP1[J]. Nature, 2022, 604(7906): 578-583.
doi: 10.1038/s41586-022-04582-8 |
[13] |
Hirata M, Fujita K, Fujihara S, et al. Telomerase reverse transcriptase promoter mutations in human hepatobiliary, pancreatic and gastrointestinal cancer cell lines[J]. In Vivo, 2022, 36(1): 94-102.
doi: 10.21873/invivo.12680 pmid: 34972704 |
[14] |
Houssaini A, Breau M, Kebe K, et al. mTOR pathway activation drives lung cell senescence and emphysema[J]. JCI Insight, 2018, 3(3): e93203.
doi: 10.1172/jci.insight.93203 URL |
[15] |
Yao C, Guan X, Carraro G, et al. Senescence of alveolar type 2 cells drives progressive pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2021, 203(6): 707-717.
doi: 10.1164/rccm.202004-1274OC URL |
[16] |
Rashid K, Sundar IK, Gerloff J, et al. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema[J]. Sci Rep, 2018, 8(1): 9023.
doi: 10.1038/s41598-018-27209-3 pmid: 29899396 |
[17] |
Wan ES, Goldstein RL, Fan VS, et al. Telomere length in COPD: Relationships with physical activity, exercise capacity, and acute exacerbations[J]. PLoS One, 2019, 14(10): e0223891.
doi: 10.1371/journal.pone.0223891 URL |
[18] |
Kuznar-Kaminska B, Mikula-Pietrasik J, Witucka A, et al. Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells[J]. Sci Rep, 2018, 8(1): 12940.
doi: 10.1038/s41598-018-31037-w |
[19] |
Wang T, Jia Z, Li S, et al. The association between leukocyte telomere length and chronic obstructive pulmonary disease is partially mediated by inflammation: A meta-analysis and population-based mediation study[J]. BMC Pulm Med, 2022, 22(1): 320.
doi: 10.1186/s12890-022-02114-8 pmid: 35987624 |
[20] |
Liu B, Maekawa T, Yoshida K, et al. Telomere shortening by transgenerational transmission of TNF-alpha-induced TERRA via ATF7[J]. Nucleic Acids Res, 2019, 47(1): 283-298.
doi: 10.1093/nar/gky1149 URL |
[21] |
Logozzi M, Mizzoni D, Di Raimo R, et al. Oral administration of fermented papaya (FPP((R))) controls the growth of a murine melanoma through the in vivo induction of a natural antioxidant response[J]. Cancers (Basel), 2019, 11(1): 118.
doi: 10.3390/cancers11010118 URL |
[22] |
Cordoba-Lanus E, Cazorla-Rivero S, Garcia-Bello MA, et al. Telomere length dynamics over 10-years and related outcomes in patients with COPD[J]. Respir Res, 2021, 22(1): 56.
doi: 10.1186/s12931-021-01616-z |
[23] |
Savale L, Chaouat A, Bastuji-Garin S, et al. Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2009, 179(7): 566-571.
doi: 10.1164/rccm.200809-1398OC URL |
[24] |
Saferali A, Lee J, Sin DD, et al. Longer telomere length in COPD patients with alpha1-antitrypsin deficiency independent of lung function[J]. PLoS One, 2014, 9(4): e95600.
doi: 10.1371/journal.pone.0095600 URL |
[25] |
Ahmad T, Sundar IK, Tormos AM, et al. Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via sirtuin 1 deacetylase in chronic obstructive pulmonary disease[J]. Am J Respir Cell Mol Biol, 2017, 56(1): 38-49.
doi: 10.1165/rcmb.2016-0198OC URL |
[26] |
Hernandez Cordero AI, Yang CX, Li X, et al. Epigenetic marker of telomeric age is associated with exacerbations and hospitalizations in chronic obstructive pulmonary disease[J]. Respir Res, 2021, 22(1): 316.
doi: 10.1186/s12931-021-01911-9 |
[27] | Casas-Recasens S, Mendoza N, Lopez-Giraldo A, et al. Telomere length but not mitochondrial DNA copy number is altered in both young and old COPD[J]. Front Med (Lausanne), 2021, 8: 761767. |
[28] |
Rode L, Bojesen SE, Weischer M, et al. Short telomere length, lung function and chronic obstructive pulmonary disease in 46, 396 individuals[J]. Thorax, 2013, 68(5): 429-435.
doi: 10.1136/thoraxjnl-2012-202544 URL |
[29] |
Andujar P, Courbon D, Bizard E, et al. Smoking, telomere length and lung function decline: A longitudinal population-based study[J]. Thorax, 2018, 73(3): 283-285.
doi: 10.1136/thoraxjnl-2017-210294 pmid: 28724638 |
[30] |
Moon DH, Kim J, Lim MN, et al. Correlation between telomere length and chronic obstructive pulmonary disease-related phenotypes: Results from the chronic obstructive pulmonary disease in Dusty Areas (CODA) Cohort[J]. Tuberc Respir Dis (Seoul), 2021, 84(3): 188-199.
doi: 10.4046/trd.2021.0015 URL |
[31] |
Yildirim H, Yildiz P, Coskunpinar E. Investigation of telomere related gene mutations in idiopathic pulmonary fibrosis[J]. Mol Biol Rep, 2020, 47(10): 7851-7860.
doi: 10.1007/s11033-020-05861-1 |
[32] |
Alder JK, Guo N, Kembou F, et al. Telomere length is a determinant of emphysema susceptibility[J]. Am J Respir Crit Care Med, 2011, 184(8): 904-912.
doi: 10.1164/rccm.201103-0520OC URL |
[33] |
Stanley SE, Chen JJ, Podlevsky JD, et al. Telomerase mutations in smokers with severe emphysema[J]. J Clin Invest, 2015, 125(2): 563-570.
doi: 10.1172/JCI78554 pmid: 25562321 |
[34] |
Chen R, Zhang K, Chen H, et al. Telomerase deficiency causes alveolar stem cell senescence-associated low-grade inflammation in lungs[J]. J Biol Chem, 2015, 290(52): 30813-30829.
doi: 10.1074/jbc.M115.681619 pmid: 26518879 |
[35] | Guzman-Vargas J, Ambrocio-Ortiz E, Perez-Rubio G, et al. Differential genomic profile in TERT, DSP, and FAM13A between COPD patients with emphysema, IPF, and CPFE syndrome[J]. Front Med (Lausanne), 2021, 8: 725144. |
[36] |
Ding Y, Li Q, Wu C, et al. TERT gene polymorphisms are associated with chronic obstructive pulmonary disease risk in the Chinese Li population[J]. Mol Genet Genomic Med, 2019, 7(8): e773.
doi: 10.1002/mgg3.v7.8 URL |
[37] |
Arimura-Omori M, Kiyohara C, Yanagihara T, et al. Association between telomere-related polymorphisms and the risk of IPF and COPD as a precursor lesion of lung cancer: Findings from the Fukuoka Tobacco-Related Lung Disease (FOLD) Registry[J]. Asian Pac J Cancer Prev, 2020, 21(3): 667-673.
doi: 10.31557/APJCP.2020.21.3.667 URL |
[38] |
Xu J, de Oliveira DM, Trudeau MA, et al. Mild catalytic defects of tert rs61748181 polymorphism affect the clinical presentation of chronic obstructive pulmonary disease[J]. Sci Rep, 2021, 11(1): 4333.
doi: 10.1038/s41598-021-83686-z pmid: 33619289 |
[39] |
Kinjo T, Kitaguchi Y, Droma Y, et al. The Gly82Ser mutation in AGER contributes to pathogenesis of pulmonary fibrosis in combined pulmonary fibrosis and emphysema (CPFE) in Japanese patients[J]. Sci Rep, 2020, 10(1): 12811.
doi: 10.1038/s41598-020-69184-8 pmid: 32732977 |
[1] | 张媛媛, 何长健, 崔炜. 老年心力衰竭合并肌少症的研究进展[J]. 临床荟萃, 2021, 36(7): 641-645. |
[2] | 张乙a,徐洪b. 肺泡Ⅱ型上皮细胞衰老与肺纤维化研究进展[J]. 临床荟萃, 2020, 35(10): 939-942. |
[3] | 王晓燕;陈萍;吴莺;蒋小猛;魏金文;何亚龙. 端粒酶和端粒酶逆转录酶在胃癌组织中的表达及临床意义[J]. 临床荟萃, 2010, 25(4): 299-301. |
[4] | 杜新生;邸志强;薛承岩;侯继申. 肺癌患者外周血端粒酶与细胞角蛋白19 mRNA表达的比较及临床意义[J]. 临床荟萃, 2009, 24(7): 597-598. |
[5] | 何小兵;王卫政. 胃息肉组织中端粒酶活性的检测及其临床意义[J]. 临床荟萃, 2009, 24(2): 137-138. |
[6] | 王卫军;杨林瀛;卢云涛;姜瑞华;高丽华;薛承岩. 端粒酶、DNA异倍体和糖链抗原19-9与癌胚抗原诊断与鉴别诊断良、恶性胸腔积液价值的比较[J]. 临床荟萃, 2007, 22(4): 282-284. |
[7] | 杨林瀛;卢云涛;薛承岩. 应用端粒酶活性鉴别诊断良、恶性胸液的研究[J]. 临床荟萃, 2007, 22(22): 1646-1647. |
[8] | 张启芳;李运泽;杨健彬. 端粒酶活性对良恶性腹水的鉴别诊断价值[J]. 临床荟萃, 2006, 21(11): 813-814. |
[9] | 王海荣;张兰桐. 抗衰老中药的研究近况与开发前景[J]. 临床荟萃, 2005, 20(21): 1251-1253. |
[10] | 李宏;单保恩;王士杰;丛庆文;张金艳. 食管癌前病变组织DNA含量及端粒酶变化探讨[J]. 临床荟萃, 2004, 19(8): 439-441. |
[11] | 朱慕云;李昌喜;姜正华;丁平;王晓玲. 联合测定胸水端粒酶和神经元特异性烯醇化酶对良恶性胸水的鉴别诊断价值[J]. 临床荟萃, 2004, 19(23): 1336-1337. |
[12] | 杨桢华;孙安远;廖蕴华;赵铖. B细胞淋巴瘤/白血病-2蛋白在狼疮性肾炎肾组织表达及意义[J]. 临床荟萃, 2004, 19(20): 1144-1147. |
[13] | 王芳芳;张玉亭. 衰老相关基因研究进展[J]. 临床荟萃, 2004, 19(11): 659-0. |
[14] | 何凤屏;冼苏;周华珍;覃锦耀;刘广钊;戴霞. 人的衰老与甲状腺激素、IGF-1、DHEA、血脂相关的研究[J]. 临床荟萃, 2002, 17(9): 499-501. |
[15] | 李琰;邓述恺;丁翠敏;孙志学. PCR-ELISA检测良恶性胸腔积液端粒酶活性的临床意义[J]. 临床荟萃, 2002, 17(21): 1284-1285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||