临床荟萃 ›› 2024, Vol. 39 ›› Issue (7): 654-657.doi: 10.3969/j.issn.1004-583X.2024.07.013
韩奕1, 牛青芳1, 赵天伊1, 陈芬1, 刘阳1, 李青霞1,2, 党椿菲1, 马玉霞1,2()
收稿日期:
2024-02-20
出版日期:
2024-07-20
发布日期:
2024-08-02
通讯作者:
马玉霞
E-mail:mayuxia@hebmu.edu.cn
基金资助:
Received:
2024-02-20
Online:
2024-07-20
Published:
2024-08-02
摘要:
支链氨基酸(branched-chain amino acids,BCAAs)作为人体的必需氨基酸,具有肌肉合成、抗蛋白分解和刺激胰岛素产生的作用。近年来其在神经系统和心血管系统疾病中的作用被发现,受到越来越多研究者的关注。随着社会经济的发展,神经系统疾病的发病率逐年上升。本文对BCAAs与脑功能的研究进展作一综述,重点关注BCAAs对认知功能的影响,特别是阿尔茨海默症、自闭症、抑郁症等,为合理摄入BCAAs维持大脑正常功能提供依据。
中图分类号:
韩奕, 牛青芳, 赵天伊, 陈芬, 刘阳, 李青霞, 党椿菲, 马玉霞. 支链氨基酸与脑功能的研究进展[J]. 临床荟萃, 2024, 39(7): 654-657.
食物 名称 | 蛋白质 含量(g) | BCAAs含量(mg) | ||||
---|---|---|---|---|---|---|
Val | Leu | Ile | 总计 | 占蛋白质 含量的比例(%) | ||
鸡胸脯肉 | 24.6 | 1 120 | 1 900 | 930 | 3 950 | 16.06 |
鸡蛋(全) | 13.1 | 636 | 1 047 | 649 | 2 332 | 17.80 |
蛋黄 | 15.2 | 805 | 1 132 | 835 | 2 772 | 18.24 |
草鱼 | 16.6 | 899 | 1 310 | 751 | 2 960 | 17.83 |
牛肉 | 20.0 | 936 | 1 563 | 850 | 3 349 | 16.75 |
对虾 | 18.6 | 841 | 1 451 | 757 | 3 049 | 16.39 |
纯牛奶 | 3.3 | 178 | 291 | 146 | 615 | 18.63 |
大豆 | 35.1 | 1 952 | 3 184 | 1 896 | 7 032 | 20.03 |
表1 常见食物中BCAAs的含量(每100 g食物)[2]
食物 名称 | 蛋白质 含量(g) | BCAAs含量(mg) | ||||
---|---|---|---|---|---|---|
Val | Leu | Ile | 总计 | 占蛋白质 含量的比例(%) | ||
鸡胸脯肉 | 24.6 | 1 120 | 1 900 | 930 | 3 950 | 16.06 |
鸡蛋(全) | 13.1 | 636 | 1 047 | 649 | 2 332 | 17.80 |
蛋黄 | 15.2 | 805 | 1 132 | 835 | 2 772 | 18.24 |
草鱼 | 16.6 | 899 | 1 310 | 751 | 2 960 | 17.83 |
牛肉 | 20.0 | 936 | 1 563 | 850 | 3 349 | 16.75 |
对虾 | 18.6 | 841 | 1 451 | 757 | 3 049 | 16.39 |
纯牛奶 | 3.3 | 178 | 291 | 146 | 615 | 18.63 |
大豆 | 35.1 | 1 952 | 3 184 | 1 896 | 7 032 | 20.03 |
[1] | Moura A, Savageau MA, Alves R. Relative amino acid composition signatures of organisms and environments[J]. PLoS One, 2013, 8(10): e77319. |
[2] | 杨月欣. 中国食物成分表[M]6版. 北京: 北京大学医学出版社, 2019. |
[3] |
Yudkoff M. Interactions in the metabolism of glutamate and the branched-chain amino acids and ketoacids in the CNS[J]. Neurochem Res, 2017, 42(1):10-18.
doi: 10.1007/s11064-016-2057-z pmid: 27696119 |
[4] |
Knaus LS, Basilico B, Malzl D, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival[J]. Cell, 2023, 186(9):1950-1967.e25.
doi: 10.1016/j.cell.2023.02.037 pmid: 36996814 |
[5] | Boemer F, Josse C, Luis G, et al. Novel loss of function variant in BCKDK causes a treatable developmental and epileptic encephalopathy[J]. Int J Mol Sci, 2022, 23(4):2253. |
[6] |
García-Cazorla A, Oyarzabal A, Fort J, et al. Two novel mutations in the BCKDK (branched-chain keto-acid dehydrogenase kinase) gene are responsible for a neurobehavioral deficit in two pediatric unrelated patients[J]. Hum Mutat, 2014, 35(4):470-477.
doi: 10.1002/humu.22513 pmid: 24449431 |
[7] |
Hull J, Hindy ME, Kehoe PG, et al. Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation[J]. J Neurochem, 2012, 123(6): 997-1009.
doi: 10.1111/jnc.12044 pmid: 23043456 |
[8] |
Hull J, Usmari Moraes M, Brookes E, et al. Distribution of the branched-chain α-ketoacid dehydrogenase complex E1α subunit and glutamate dehydrogenase in the human brain and their role in neuro-metabolism[J]. Neurochem Int, 2018, 112:49-58.
doi: S0197-0186(17)30258-9 pmid: 29104034 |
[9] | Salcedo C, Andersen JV, Vinten KT, et al. Functional metabolic mapping reveals highly active branched-chain amino acid metabolism in human astrocytes, which is impaired in iPSC-derived astrocytes in Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13:736580. |
[10] | 2024 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2024, 20(5):3708-3821. |
[11] | Berezhnoy G, Laske C, Trautwein C. Metabolomic profiling of CSF and blood serum elucidates general and sex-specific patterns for mild cognitive impairment and Alzheimer’s disease patients[J]. Front Aging Neurosci, 2023, 15:1219718. |
[12] |
Toledo JB, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer's disease: A biochemical road map[J]. Alzheimers Dement, 2017, 13(9):965-984.
doi: S1552-5260(17)30046-8 pmid: 28341160 |
[13] | Yang Z, Wang J, Chen J, et al. High-resolution NMR metabolomics of patients with subjective cognitive decline plus: Perturbations in the metabolism of glucose and branched-chain amino acids[J]. Neurobiol Dis, 2022, 171:105782. |
[14] | Siddik MAB, Shin AC. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond[J]. Endocrinol Metab (Seoul), 2019, 34(3):234-246. |
[15] | Qian XH, Liu XL, et al. Investigating the causal association between branched-chain amino acids and Alzheimer's disease: A bidirectional Mendelian randomized study[J]. Front Nutr, 2023, 10:1103303. |
[16] | Mengr A, Strnadová V, Strnad Š, et al. Feeding high-fat diet accelerates development of peripheral and central insulin resistance and inflammation and worsens AD-like pathology in APP/PS1 mice[J]. Nutrients, 2023, 15(17):3690. |
[17] |
Shin AC, Fasshauer M, Filatova N, et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism[J]. Cell Metab, 2014, 20(5):898-909.
doi: S1550-4131(14)00400-8 pmid: 25307860 |
[18] |
Murashige D, Jung JW, Neinast MD, et al. Extra-cardiac BCAA catabolism lowers blood pressure and protects from heart failure[J]. Cell Metab, 2022, 34(11):1749-1764.e7.
doi: 10.1016/j.cmet.2022.09.008 pmid: 36223763 |
[19] | Hull J, Patel V, El Hindy M, et al. Regional increase in the expression of the BCAT proteins in Alzheimers disease brain: Implications in glutamate toxicity[J]. J Alzheimers Dis, 2015, 45(3):891-905. |
[20] | Li H, Ye D, Xie W, et al. Defect of branched-chain amino acid metabolism promotes the development of Alzheimer's disease by targeting the mTOR signaling[J]. Biosci Rep, 2018, 38(4): BSR20180127. |
[21] |
Wang XL, Li CJ, Xing Y, et al. Hypervalinemia and hyperleucine-isoleucinemia caused by mutations in the branched-chain amino acid aminotransferase gene[J]. J Inherit Metab Dis, 2015, 38(5):855-861.
doi: 10.1007/s10545-015-9814-z pmid: 25653144 |
[22] |
Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy[J]. Neurobiol Dis, 2015, 84:39-49.
doi: 10.1016/j.nbd.2015.03.014 pmid: 25796566 |
[23] |
Tramutola A, Triplett JC, Di Domenico F, et al. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD[J]. J Neurochem, 2015, 133(5): 739-749.
doi: 10.1111/jnc.13037 pmid: 25645581 |
[24] |
Tournissac M, Vandal M, Tremblay C, et al. Dietary intake of branched-chain amino acids in a mouse model of Alzheimer's disease: Effects on survival, behavior, and neuropathology[J]. Alzheimers Dement (N Y), 2018, 4: 677-687.
doi: 10.1016/j.trci.2018.10.005 pmid: 30560200 |
[25] | Siddik MAB, Mullins CA, Kramer A, et al. Branched-chain amino acids are linked with Alzheimer’s disease-related pathology and cognitive deficits[J]. Cells, 2022, 11(21):3523. |
[26] | Cascio L, Chen CF, Pauly R, et al. Abnormalities in the genes that encode Large Amino Acid Transporters increase the risk of autism spectrum disorder[J]. Mol Genet Genomic Med, 2020, 8(1): e1036. |
[27] |
Strauss KA, Carson VJ, Soltys K, et al. Branched-chain α-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes[J]. Mol Genet Metab, 2020, 129(3):193-206.
doi: S1096-7192(19)31291-0 pmid: 31980395 |
[28] |
Zemdegs J, Martin H, Pintana H, et al. Metformin promotes anxiolytic and antidepressant-like responses in insulin-resistant mice by decreasing circulating branched-chain amino acids[J]. J Neurosci, 2019, 39(30):5935-5948.
doi: 10.1523/JNEUROSCI.2904-18.2019 pmid: 31160539 |
[29] |
Knaus LS, Basilico B, Malzl D, et al. Large neutral amino acid levels tune perinatal neuronal excitability and survival[J]. Cell, 2023, 186(9):1950-1967.e25.
doi: 10.1016/j.cell.2023.02.037 pmid: 36996814 |
[30] |
Panjwani AA, Ji Y, Fahey JW, et al. Maternal dyslipidemia, plasma branched-chain amino acids, and the risk of child autism spectrum disorder: Evidence of sex difference[J]. J Autism Dev Disord, 2020, 50(2): 540-550.
doi: 10.1007/s10803-019-04264-x pmid: 31686281 |
[31] |
Fellendorf FT, Platzer M, Pilz R, et al. Branched-chain amino acids are associated with metabolic parameters in bipolar disorder[J]. World J Biol Psychiatry, 2019, 20(10): 821-826.
doi: 10.1080/15622975.2018.1487077 pmid: 29898625 |
[32] | Asor E, Stempler S, Avital A, et al. The role of branched chain amino acid and tryptophan metabolism in rat’s behavioral diversity: Intertwined peripheral and brain effects[J]. Eur Neuropsychopharmacol, 2015, 25(10):1695-1705. |
[33] | Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, et al. Branched-chain amino acids as new biomarkers of major depression-A novel neurobiology of mood disorder[J]. PloS one, 2016, 11(8):e0160542. |
[34] | Blackburn PR, Gass JM, Vairo FPE, et al. Maple syrup urine disease: Mechanisms and management[J]. Appl Clin Genet, 2017, 10:57-66. |
[35] |
Koochakpoor G, Salari-Moghaddam A, Keshteli AH, et al. Dietary intake of branched-chain amino acids in relation to depression, anxiety and psychological distress[J]. Nutr J, 2021, 20(1):11.
doi: 10.1186/s12937-021-00670-z pmid: 33514378 |
[36] | Matsuda T, Suzuki H, Sugano Y, et al. Effects of branched-chain amino acids on skeletal muscle, glycemic control, and neuropsychological performance in elderly persons with type 2 diabetes mellitus: An exploratory randomized controlled trial[J]. Nutrients, 2022, 14(19):3917. |
[37] | Nasrallah P, Haidar EA, Stephan JS, et al. Branched-chain amino acids mediate resilience to chronic social defeat stress by activating BDNF/TRKB signaling[J]. Neurobiol Stress, 2019, 11:100170. |
[1] | 原风英, 马晓玲, 曲军民. 阿戈美拉汀结合扑克牌类娱疗对首发重度抑郁症患者认知功能的影响[J]. 临床荟萃, 2024, 39(2): 130-133. |
[2] | 孙佳宁, 崔轶霞. 类风湿关节炎与抑郁症共病的研究进展[J]. 临床荟萃, 2023, 38(7): 663-667. |
[3] | 陈轩轩, 高树贵. 改良无抽搐电休克治疗抑郁症所致记忆损害临床干预策略[J]. 临床荟萃, 2023, 38(1): 75-78. |
[4] | 曲伊平, 梁慧杰, 陈允恩. 重复经颅磁刺激治疗青少年抑郁症认知功能损害的研究进展[J]. 临床荟萃, 2022, 37(10): 957-960. |
[5] | 邢立棉a,李岩松b,苏东风b. 血清胱抑素C、NIHSS与首发急性脑梗死患者卒中后抑郁相关性分析[J]. 临床荟萃, 2020, 35(5): 417-420. |
[6] | 朱菊红a,李菲菲b,杨斌a,张兰a,王欢a, 范阿娇a. 老年抑郁症认知功能与血清同型半胱氨酸及血脂水平的相关性[J]. 临床荟萃, 2020, 35(4): 353-356. |
[7] | 付丛会1,陈梅1,张晓凤1, 刘新立1,崔燕萍1,沈志强1, 吴毅2,贾杰2,徐英1. 特殊丰富环境对长期入住护理医院老年人抑郁状态和生活质量的影响研究[J]. 临床荟萃, 2019, 34(7): 651-654. |
[8] | 吕睿a,曹业才b,王晓琪c. 基于重度抑郁症患者血清中miR-221-3p表达的相关研究[J]. 临床荟萃, 2019, 34(11): 999-1003. |
[9] | 刘洪娜1,2,苏少慧1,2,胡义亭2,王玉珍2. 功能性消化不良患者抑郁状态与血清白介素6水平的相关性[J]. 临床荟萃, 2017, 32(8): 699-702. |
[10] | 李宁,闫景卉,王朝敏,周珊珊. 高胆固醇血症对首发中年抑郁症患者认知功能的影响[J]. 临床荟萃, 2017, 32(10): 834-836. |
[11] | 孙亭,李广学,高树贵. 脑源性神经营养因子基因甲基化在抑郁症中的研究进展[J]. 临床荟萃, 2016, 31(10): 1151-1154. |
[12] | 项守奎;王龙;吴阳;钱凤娟;蒋晓红;华飞. 多囊卵巢综合征患者血清维生素D水平与抑郁症的关系[J]. 临床荟萃, 2015, 30(6): 649-652653. |
[13] | 胡蕊;王志峰;游道峰;李幼东;王冉;王岚;王学义. 帕罗西汀联合高压氧治疗抑郁症患者睡眠障碍的临床疗效[J]. 临床荟萃, 2013, 28(6): 630-632. |
[14] | 黄永宏;杨改云. 西酞普兰与曲唑酮治疗老年抑郁症临床对照研究[J]. 临床荟萃, 2012, 27(3): 254-255. |
[15] | 徐华;韩扬. 高压氧治疗抑郁症顿然缓解1例[J]. 临床荟萃, 2012, 27(23): 2099-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||