Clinical Focus ›› 2021, Vol. 36 ›› Issue (7): 641-645.doi: 10.3969/j.issn.1004-583X.2021.07.014
Previous Articles Next Articles
Received:
2021-03-27
Online:
2021-07-20
Published:
2021-08-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2021.07.014
机构 | 作者 | 定义 | 肌肉质量 | 肌肉力量 (握力) | 肌肉功能 | |
---|---|---|---|---|---|---|
DXA | BIA | |||||
EWGSOP 2010 | Creuz-Jentoft 等 (2010) | 与肌力降低或体能降低相关的渐进性和全身性骨骼肌质量损失 | ASM男性<7.26 kg/m2 ASM女性<5.5 kg/m2 | - | 男性<30 kg 女性<20 kg | SPPB≤8分;6 m步速<1.0 m/s,4 m步速<0.8 m/s |
EWGSOP 2018 | Creuz-Jentoft 等 (2019) | 通过肌肉力量和肌肉质量降低来识别,体能降低描述了其严重状态 | ASM男性<7 kg/m2 ASM女性<5.5 kg/m2 | ASM男性<20 kg ASM女性<15 kg | 男性<27 kg 女性<16 kg | 日常步速<0.8 m/s;TUG≥20 s;SPPB≤8分;400 m步行测试:未完成或完成≥6 min;5次座椅站立试验>15 s |
AWGS 2019 | Chen等 (2020) | 与年龄相关的肌肉质量损失, 与肌肉力量降低和体能降低有关 | SM男性<7.0 kg/m2 SM女性<5.4 kg/m2 | - | 男性<28 kg 女性<18 kg | 6 m步速<1.0 m/s;SPPB≤9分;5次座椅站立试验≥12 s |
SDOC 2018 | Bhasin等 (2020) | 由低握力定义的低肌肉力量和由低日常步速度定义的低身体表现应该包括在肌少症的定义中 | - | - | 男性<35.5 kg 女性<20.0 kg | 日常步速:临界点取决于年龄、性别、种族/民族和疾病 |
机构 | 作者 | 定义 | 肌肉质量 | 肌肉力量 (握力) | 肌肉功能 | |
---|---|---|---|---|---|---|
DXA | BIA | |||||
EWGSOP 2010 | Creuz-Jentoft 等 (2010) | 与肌力降低或体能降低相关的渐进性和全身性骨骼肌质量损失 | ASM男性<7.26 kg/m2 ASM女性<5.5 kg/m2 | - | 男性<30 kg 女性<20 kg | SPPB≤8分;6 m步速<1.0 m/s,4 m步速<0.8 m/s |
EWGSOP 2018 | Creuz-Jentoft 等 (2019) | 通过肌肉力量和肌肉质量降低来识别,体能降低描述了其严重状态 | ASM男性<7 kg/m2 ASM女性<5.5 kg/m2 | ASM男性<20 kg ASM女性<15 kg | 男性<27 kg 女性<16 kg | 日常步速<0.8 m/s;TUG≥20 s;SPPB≤8分;400 m步行测试:未完成或完成≥6 min;5次座椅站立试验>15 s |
AWGS 2019 | Chen等 (2020) | 与年龄相关的肌肉质量损失, 与肌肉力量降低和体能降低有关 | SM男性<7.0 kg/m2 SM女性<5.4 kg/m2 | - | 男性<28 kg 女性<18 kg | 6 m步速<1.0 m/s;SPPB≤9分;5次座椅站立试验≥12 s |
SDOC 2018 | Bhasin等 (2020) | 由低握力定义的低肌肉力量和由低日常步速度定义的低身体表现应该包括在肌少症的定义中 | - | - | 男性<35.5 kg 女性<20.0 kg | 日常步速:临界点取决于年龄、性别、种族/民族和疾病 |
[1] | Eschalier R, Massoullié G, Boirie Y, et al. Sarcopenia in patients after an episode of acute decompensated heart failure: An underdiagnosed problem with serious impact[J]. Clin Nutr, 2021: S0261-5614(20)30708-30711. |
[2] |
Pár A, Hegyi JP, Váncsa S, et al. Sarcopenia-2021: Pathophysiology, diagnosis, therapy[J]. Orv Hetil, 2021,162(1):3-12.
doi: 10.1556/650.2021.32015 URL |
[3] |
Abe K, Yano T, Katano S, et al. Utility of the sarcopenia index for assessment of muscle mass and nutritional status in patients with chronic heart failure: Comparison with anthropometric parameters[J]. Geriatr Gerontol Int, 2020,20(4):388-389.
doi: 10.1111/ggi.v20.4 URL |
[4] |
Wolsk E, Gustafsson F. When making your bed feels like running a marathon: Understanding exercise limitation in heart failure[J]. Circ Heart Fail, 2020,13(11):e007993.
doi: 10.1161/CIRCHEARTFAILURE.120.007993 pmid: 33201751 |
[5] |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019,48(1):16-31.
doi: 10.1093/ageing/afy169 pmid: 30312372 |
[6] |
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on sarcopenia in older people[J]. Age Ageing, 2010,39(4):412-423.
doi: 10.1093/ageing/afq034 pmid: 20392703 |
[7] |
Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia:2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020,21(3):300-307.e2.
doi: 10.1016/j.jamda.2019.12.012 URL |
[8] |
Patel SM, Duchowny KA, Kiel DP, et al. Sarcopenia definition & outcomes consortium defined low grip strength in two cross-sectional, population-based cohorts[J]. J Am Geriatr Soc, 2020,68(7):1438-1444.
doi: 10.1111/jgs.v68.7 URL |
[9] |
Zhao W, Lu M, Wang X, et al. The role of sarcopenia questionnaires in hospitalized patients with chronic heart failure[J]. Aging Clin Exp Res, 2020,33(2):339-344.
doi: 10.1007/s40520-020-01561-9 URL |
[10] |
Bianchi L, Abete P, Bellelli G, et al. Prevalence and clinical correlates of sarcopenia, identified according to the EWGSOP definition and diagnostic algorithm, in hospitalized older people: The GLISTEN study[J]. J Gerontol A Biol Sci Med Sci, 2017,72(11):1575-1581.
doi: 10.1093/gerona/glw343 URL |
[11] |
Beyer SE, Sanghvi MM, Aung N, et al. Prospective association between handgrip strength and cardiac structure and function in UK adults[J]. PLoS One, 2018,13(3):e0193124.
doi: 10.1371/journal.pone.0193124 URL |
[12] |
Nozato S, Yamamoto K, Takeshita H, et al. Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice[J]. Clin Sci (Lond), 2019,133(18):2005-2018.
doi: 10.1042/CS20190573 URL |
[13] |
Quiroga DT, Muñoz MC, Gil C, et al. Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice[J]. Physiol Rep, 2018,6(16):e13824.
doi: 10.14814/phy2.13824 URL |
[14] |
Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly[J]. BMC Musculoskelet Disord, 2020,21(1):214.
doi: 10.1186/s12891-020-03236-y URL |
[15] |
Saitoh M, Ebner N, von Haehling S, et al. Therapeutic considerations of sarcopenia in heart failure patients[J]. Expert Rev Cardiovasc Ther, 2018,16(2):133-142.
doi: 10.1080/14779072.2018.1424542 URL |
[16] | 纪进阳, 张勤, 杨云梅. 老年慢性心力衰竭合并肌少症的研究进展[J]. 中华危重症医学杂志(电子版), 2020,13(05):390-393. |
[17] |
Shin MJ, Jeon YK, Kim IJ. Testosterone and sarcopenia[J]. World J Mens Health, 2018,36(3):192-198.
doi: 10.5534/wjmh.180001 URL |
[18] |
Curcio F, Testa G, Liguori I, et al. Sarcopenia and heart failure[J]. Nutrients, 2020,12(1):211.
doi: 10.3390/nu12010211 URL |
[19] |
İlhan B, Bahat G, Erdoğan T, et al. Anorexia is independently associated with decreased muscle mass and strength in community dwelling older adults[J]. J Nutr Health Aging, 2019,23(2):202-206.
doi: 10.1007/s12603-018-1119-0 pmid: 30697631 |
[20] |
Lena A, Anker MS, Springer J. Muscle wasting and sarcopenia in heart failure-The current state of science[J]. Int J Mol Sci, 2020,21(18) :6549.
doi: 10.3390/ijms21186549 URL |
[21] |
van der Pol A, van Gilst WH, Voors AA, et al. Treating oxidative stress in heart failure: Past, present and future[J]. Eur J Heart Fail, 2019,21(4):425-435.
doi: 10.1002/ejhf.2019.21.issue-4 URL |
[22] |
Gielen S, Sandri M, Kozarez I, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: The randomized Leipzig Exercise Intervention in chronic heart failure and aging catabolism study[J]. Circulation, 2012,125(22):2716-2727.
doi: 10.1161/CIRCULATIONAHA.111.047381 URL |
[23] |
Curcio F, Liguori I, Cellulare M, et al. Physical activity scale for the elderly (PASE) score is related to sarcopenia in noninstitutionalized older adults[J]. J Geriatr Phys Ther, 2019,42(3):130-135.
doi: 10.1519/JPT.0000000000000139 URL |
[24] |
Nakano I, Tsuda M, Kinugawa S, et al. Loop diuretic use is associated with skeletal muscle wasting in patients with heart failure[J]. J Cardiol, 2020,76(1):109-114.
doi: S0914-5087(20)30018-6 pmid: 32001074 |
[25] |
Kono Y, Izawa H, Aoyagi Y, et al. The difference in determinant factor of six-minute walking distance between sarcopenic and non-sarcopenic elderly patients with heart failure[J]. J Cardiol, 2020,75(1):42-46.
doi: 10.1016/j.jjcc.2019.07.002 URL |
[26] |
Emami A, Saitoh M, Valentova M, et al. Comparison of sarcopenia and cachexia in men with chronic heart failure:Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF)[J]. Eur J Heart Fail, 2018,20(11):1580-1587.
doi: 10.1002/ejhf.1304 pmid: 30160804 |
[27] |
von Haehling S, Garfias Macedo T, Valentova M, et al. Muscle wasting as an independent predictor of survival in patients with chronic heart failure[J]. J Cachexia Sarcopenia Muscle, 2020,11(5):1242-1249.
doi: 10.1002/jcsm.v11.5 URL |
[28] |
Yeung SSY, Reijnierse EM, Pham VK, et al. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis[J]. J Cachexia Sarcopenia Muscle, 2019,10(3):485-500.
doi: 10.1002/jcsm.12411 pmid: 30993881 |
[29] |
Selvaraj S, Kim J, Ansari BA, et al. Body composition, natriuretic peptides, and adverse outcomes in heart failure with preserved and reduced ejection fraction[J]. JACC Cardiovasc Imaging, 2020,14(1):203-215.
doi: 10.1016/j.jcmg.2020.07.022 URL |
[30] |
Antunes-Correa LM, Trevizan PF, Bacurau AVN, et al. Effects of aerobic and inspiratory training on skeletal muscle microRNA-1 and downstream-associated pathways in patients with heart failure[J]. J Cachexia Sarcopenia Muscle, 2020,11(1):89-102.
doi: 10.1002/jcsm.12495 pmid: 31743617 |
[31] |
Garcia M, Seelaender M, Sotiropoulos A, et al. Vitamin D, muscle recovery, sarcopenia, cachexia, and muscle atrophy[J]. Nutrition, 2019,60:66-69.
doi: 10.1016/j.nut.2018.09.031 URL |
[32] |
Nichols S, McGregor G, Al-Mohammad A, et al. The effect of protein and essential amino acid supplementation on muscle strength and performance in patients with chronic heart failure: A systematic review[J]. Eur J Nutr, 2020,59(5):1785-1801.
doi: 10.1007/s00394-019-02108-z pmid: 31659450 |
[1] | . [J]. Clinical Focus, 2024, 39(1): 75-79. |
[2] | Duan Fang, Cui Wei. Application principles of vasodilators in the treatment of acute heart failure [J]. Clinical Focus, 2023, 38(9): 773-778. |
[3] | . [J]. Clinical Focus, 2023, 38(9): 832-837. |
[4] | . [J]. Clinical Focus, 2023, 38(6): 573-576. |
[5] | . [J]. Clinical Focus, 2023, 38(5): 459-464. |
[6] | Wang Zhen, Yang Xiaoyue, Li Shaojie, Wang Xian, Chen Shuxia, Gu Jian. Analysis of clinical characteristics and readmission risk factors in patients with ejection fraction preserved heart failure combined with atrial fibrillation [J]. Clinical Focus, 2023, 38(4): 308-314. |
[7] | . [J]. Clinical Focus, 2023, 38(4): 369-372. |
[8] | Zuo Xiuxiu, Hou Tianhua, Wang Hongxiang. Effect of subclinical hypothyroidism on prognosis of patients with chronic systolic heart failure: A meta-analysis [J]. Clinical Focus, 2022, 37(10): 905-911. |
[9] | . [J]. Clinical Focus, 2022, 37(9): 838-841. |
[10] | Li Heng, Li Yonghui, Sun Xiaoqiang, Wang Lin, He Feng. Efficacy and safety of anticoagulant therapy for patients with heart failure in sinus rhythm [J]. Clinical Focus, 2022, 37(5): 406-411. |
[11] | Luo Fanglin, Guan Suying, Wu Guoxiang. Clinical effect of sacubitril-valsartan combined with activin on acute left heart failure [J]. Clinical Focus, 2021, 36(9): 782-785. |
[12] | Zhao Meili, Xiao Liyuan, Liu Lin, Kang Chao, Zhang Qiuxiang. Correlation between NT-proBNP, hs-CRP, left atrium diameter and chronic heart failure concurrent with atrial fibrillation [J]. Clinical Focus, 2021, 36(5): 412-415. |
[13] | Xu Dongrui, Zhao Qinhui, Liu Tongxiang. Clinical effect of sacubitril/valsartan for heart failure with mid-range ejection fraction in left ventricle [J]. Clinical Focus, 2021, 36(5): 416-420. |
[14] | Bai Lian, Guo Peng, Luan Bo, Bai Hao, Jiang Shan. Correlation between serum free fatty acid and cardiac function in patients with acute heart failure [J]. Clinical Focus, 2021, 36(3): 208-211. |
[15] | . [J]. Clinical Focus, 2020, 35(12): 1126-1131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||