Clinical Focus ›› 2022, Vol. 37 ›› Issue (5): 463-466.doi: 10.3969/j.issn.1004-583X.2022.05.015
Previous Articles Next Articles
Received:
2022-03-01
Online:
2022-05-20
Published:
2022-06-22
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.05.015
[1] | Lee JY, Yoon EJ, Kim YK, et al. Nonmotor and dopamine transporter change in REM sleep behavior disorder by olfactory impairment[J]. J Mov Disord, 2019, 12(2): 103-112. |
[2] |
Hayes MT. Parkinson’s disease and parkinsonism[J]. Am J Med, 2019, 132(7):802-807.
doi: 10.1016/j.amjmed.2019.03.001 URL |
[3] |
Raza C, Anjum R, Shakeel N. Parkinson’s disease: Mechanisms, translational models and management strategies[J]. Life Sci, 2019, 226(2):77-90.
doi: 10.1016/j.lfs.2019.03.057 URL |
[4] |
Mittal BR, Sood A, Shukla J, et al. 99mTc-TRODAT-1 SPECT/CT imaging as a complementary biomarker in the diagnosis of parkinsonian syndromes[J]. Nucl Med Commun, 2018, 39(4):312-318.
doi: 10.1097/MNM.0000000000000802 URL |
[5] |
Kung MP, Stevenson DA, Plossl K, et al. (99m)Tc-TRODAT-1 SPECT-1:A novel technetium-99mcomplex as a dopamine transporter imaging agent[J]. Eur J Nucl Med, 1997, 24(4):372-380.
doi: 10.1007/BF00881808 pmid: 9096087 |
[6] |
Sharp ME, Duncan K, Foerde K, et al. Dopamine is associated with prioritization of reward-associated memories in Parkinson’s disease[J]. Brain, 2020, 143(8):2519-2531.
doi: 10.1093/brain/awaa182 URL |
[7] | Tripathi M, Kumar A, Bal C. Neuroimaging in parkinsonian disorders[J]. Neurol India, 2018, 66(5):S68-S78. |
[8] |
Ikeda K, Ebina J, Kawabe K, et al. Dopamine transporter imaging in parkinson disease: Progressive changes and therapeutic modification after anti-parkinsonian medications[J]. Intern Med, 2019, 58(12):1665-1672.
doi: 10.2169/internalmedicine.2489-18 URL |
[9] |
Sun Y, Liu C, Chen Z, et al. A phase 2, open-label, multi-center study to evaluate the efficacy and safety of (99m)Tc-TRODAT-1 SPECT to detect Parkinson’s disease[J]. Ann Nucl Med, 2020, 34(1):31-37.
doi: 10.1007/s12149-019-01412-2 pmid: 31646428 |
[10] |
Kuten J, Linevitz A, Lerman H, et al. [18F] FDOPA PET may confirm the clinical diagnosis of Parkinson's disease by imaging the nigro-striatal pathway and the sympathetic cardiac innervation: Proof-of-concept study[J]. J Integr Neurosci, 2020, 19(3):489-494.
doi: 10.31083/j.jin.2020.03.196 URL |
[11] |
Mittal BR, Sood A, Shukla J, et al. 99mTc-TRODAT-1 SPECT/CT imaging as a complementary biomarker in the diagnosis of parkinsonian syndromes[J]. Nucl Med Commun, 2018, 39(4):312-318.
doi: 10.1097/MNM.0000000000000802 URL |
[12] |
Bor-Seng-Shu E, Pedroso JL, Felicio AC, et al. Substantia nigra echogenicity and imaging of striatal dopamine transporters in Parkinson's disease: A cross-sectional study[J]. Parkinsonism Relat Disord, 2014, 20(5):477-481.
doi: 10.1016/j.parkreldis.2014.01.015 URL |
[13] |
Arena JE, Urrutia L, Falasco G, et al. Correlation between (99m)Tc-TRODAT-1 SPECT and (18)F-FDOPA PET in patients with Parkinson's disease: A pilot study[J]. Radiol Bras, 2021, 54(4):232-237.
doi: 10.1590/0100-3984.2020.0087 URL |
[14] |
Mittal BR, Sood A, Shukla J, et al. 99mTc-TRODAT-1 SPECT/CT imaging as a complementary biomarker in the diagnosis of parkinsonian syndromes[J]. Nucl Med Commun, 2018, 39(4):312-318.
doi: 10.1097/MNM.0000000000000802 URL |
[15] |
Sasannezhad P, Juibary AG, Sadri K, et al. (99m)Tc-TRODAT-1 SPECT imaging in early and late onset Parkinson's disease[J]. Asia Ocean J Nucl Med Biol, 2017, 5(2):114-119.
doi: 10.22038/aojnmb.2017.8844 pmid: 28660222 |
[16] |
Huang WS, Lin SZ, Lin JC, et al. Evaluation of early-stage Parkinson's disease with 99mTc-TRODAT-1 imaging[J]. J Nucl Med, 2001, 42(9):1303-1308.
pmid: 11535717 |
[17] | Fornari L, Da S, Muratt C, et al. Striatal dopamine correlates to memory and attention in Parkinson's disease[J]. Am J Nucl Med Mol Imaging, 2021, 11(1):10-19. |
[18] |
Patel A, Simon S, et al. Dopamine transporter imaging with Tc-99m TRODAT-1 SPECT in Parkinson's disease and its correlation with clinical disease severity[J]. Asia Ocean J Nucl Med Biol, 2019, 7(1):22-28.
doi: 10.22038/AOJNMB.2018.30356.1208 pmid: 30705908 |
[19] |
Gupta V, Ranjan R, Verma R, et al. Correlation of 99m Tc-TRODAT-1 SPECT imaging findings and clinical staging of parkinson disease[J]. Clin Nucl Med, 2019, 44(5):347-350.
doi: 10.1097/RLU.0000000000002529 URL |
[20] |
Pifarre P, Cuberas G, Hernandez J, et al. Cortical and subcortical patterns of I-123 iodobenzamide SPECT in striatal D(2) receptor parkinsonisms[J]. Clin Nucl Med, 2010, 35(4):228-233.
doi: 10.1097/RLU.0b013e3181d18cb3 URL |
[21] |
Hsu SY, Yeh LR, Chen TB, et al. Classification of the multiple stages of Parkinson's disease by a deep convolution neural network based on (99m)Tc-TRODAT-1 SPECT images[J]. Molecules, 2020, 25(20):253-255.
doi: 10.3390/molecules25020253 URL |
[22] |
Howland EJ, Palmer J, Lumley M, et al. Acquired factor Ⅷ inhibitors as a cause of primary post-partum haemorrhage[J]. Eur J Obstet Gynecol Reprod Biol, 2002, 103(1):97-98.
pmid: 12039476 |
[23] |
Hossein-Tehrani MR, Ghaedian T, Hooshmandi E, et al. Brain TRODAT-SPECT versus MRI morphometry in distinguishing early mild Parkinson's disease from other extrapyramidal syndromes[J]. J Neuroimaging, 2020, 30(5):683-689.
doi: 10.1111/jon.12740 pmid: 32557946 |
[24] |
Evers L, Krijthe JH, Meinders MJ, et al. Measuring Parkinson's disease over time: The real-world within-subject reliability of the MDS-UPDRS[J]. Mov Disord, 2019, 34(10):1480-1487.
doi: 10.1002/mds.27790 URL |
[25] |
Li DH, Zhang LY, Hu YY, et al. Transcranial sonography of the substantia nigra and its correlation with DAT-SPECT in the diagnosis of Parkinson's disease[J]. Parkinsonism Relat Disord, 2015, 21(8):923-928.
doi: 10.1016/j.parkreldis.2015.05.024 URL |
[26] |
Wang X, Cao Z, Liu G, et al. Clinical characteristics and electrophysiological biomarkers of Parkinson's disease developed from essential tremor[J]. Front Neurol, 2020, 11:471-474.
doi: 10.3389/fneur.2020.00471 URL |
[27] |
Fallahi B, Esmaeili A, Beiki D, et al. Evaluation of (99m)Tc-TRODAT-1 SPECT in the diagnosis of Parkinson's disease versus other progressive movement disorders[J]. Ann Nucl Med, 2016, 30(2):153-162.
doi: 10.1007/s12149-015-1042-y pmid: 26612262 |
[28] |
Kaasinen V, Vahlberg T, Stoessl AJ, et al. Dopamine receptors in Parkinson's disease: A meta-analysis of imaging studies[J]. Mov Disord, 2021, 36(8):1781-1791.
doi: 10.1002/mds.28632 URL |
[29] |
Kochem A, Orio M, Jarjayes O, et al. Unsymmetrical one-electron oxidized ni(II)-bis(salicylidene) complexes: A protonation-induced shift of the oxidation site[J]. Chem Commun (Camb), 2010, 46(36):6765-6767.
doi: 10.1039/c0cc01775b URL |
[30] | Lu CS, Weng YH, Chen MC, et al. 99mTc-TRODAT-1 imaging of multiple system atrophy[J]. J Nucl Med, 2004, 45(1):49-55. |
[31] |
Tzen KY, Lu CS, Yen TC, et al. Differential diagnosis of Parkinson's disease and vascular parkinsonism by (99m)Tc-TRODAT-1[J]. J Nucl Med, 2001, 42(3):408-413.
pmid: 11337515 |
[1] | Wang Jiuxue, Li Na, Jin Wei, Wang Shuo, Chang Yajun, Wang Tianjun. Correlation between serum uric acid, homocysteine and cystatin C levels with motor symptoms and cognitive function in Parkinson's disease patients [J]. Clinical Focus, 2024, 39(2): 125-129. |
[2] | . [J]. Clinical Focus, 2023, 38(9): 845-850. |
[3] | . [J]. Clinical Focus, 2023, 38(9): 855-858. |
[4] | . [J]. Clinical Focus, 2023, 38(2): 189-192. |
[5] | Li Wenjun, Zhang Ce, Liu Junyan. Improving circulation aggravates the orthostatic hypotension in a patient with Parkinson's disease: A case report [J]. Clinical Focus, 2022, 37(10): 934-937. |
[6] | Guo Chang, Shen Huinan, Sun Yimeng, Wang Dongyu. Correlation between blood lipid and homocysteine and cognitive impairment in Parkinson's disease [J]. Clinical Focus, 2022, 37(2): 128-132. |
[7] | Zhao Hang;Ge Hanming;Liang Zhanhua;Wang Yan. Correlation analysis of individualized treatment compliance and disease progression in patients with Parkinson disease [J]. Clinical Focus, 2015, 30(5): 499-502. |
[8] | SUN Lin-juan;XU Sheng-li;ZHOU Ming;MAO Li-jun;CHEN Biao. Protection of cysteamine on 1-methy1-4-phenylpyridinium induced SH-SY5Y in Parkinson's disease cell model by antioxidant [J]. Clinical Focus, 2014, 29(7): 740-743. |
[9] | SUN Lin-juan;MAO Li-jun;XU Sheng-li;ZHOU Ming;CHEN Biao. Protection of cysteamine on dopaminergic neurons in Parkinson disease mice model by antioxidant [J]. Clinical Focus, 2013, 28(2): 181-0. |
[10] | . [J]. Clinical Focus, 2012, 27(15): 1359-0. |
[11] | ZENG Wen-jing;ZHANG Xiao-ying;LI Yan-yun;LIU Yan;LI Yan. Relationship between polymorphism of monoamine oxidase B gene and Parkinson disease in Xinjiang Uygurs [J]. Clinical Focus, 2012, 27(9): 764-766. |
[12] | . [J]. CLINICAL FOCUS, 2011, 26(10): 888901-0. |
[13] | . [J]. CLINICAL FOCUS, 2011, 26(5): 400-0. |
[14] | . [J]. CLINICAL FOCUS, 2010, 25(21): 1931-0. |
[15] | ZHANG Li;KONG Yan;XU Zhuan;CHEN Jian-hua;ZHANG Zheng-chun. Diagnostic value on pronton magnetic resonance spectroscopy of lentiform nucleus in Parkinson disease [J]. CLINICAL FOCUS, 2009, 24(13): 1115-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||