Clinical Focus ›› 2023, Vol. 38 ›› Issue (9): 845-850.doi: 10.3969/j.issn.1004-583X.2023.09.013
Previous Articles Next Articles
Received:
2023-06-10
Online:
2023-09-20
Published:
2023-11-21
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.09.013
出版 年份 | 研究设计 | 结论 |
---|---|---|
2007 | 前瞻性队列研究 | T2DM与PD发生风险增加有关[ |
2008 | 前瞻性队列研究 | T2DM病史与PD发生风险增加有关,校正混杂因素和排除已知血管疾病受试者后,仍有相关性[ |
2011 | 前瞻性队列研究 | T2DM会增加PD发生风险[ |
2012 | 回顾性队列研究 | 校正其他变量后,T2DM会增加PD发病率[ |
2012 | 病例对照研究 | T2DM是PD症状严重程度的危险因素[ |
2018 | 回顾性队列研究 | T2DM增加PD发生率[ |
2020 | 前瞻性队列研究 | T2DM患者PD风险增加,PD发病率与高血糖暴露程度呈正比[ |
2021 | 前瞻性队列研究 | 血糖控制不佳的T2DM是PD患者运动症状加重的独立危险因素[ |
2021 | 回顾性队列研究 | T2DM前期和T2DM均增加PD发生率[ |
2023 | 回顾性队列研究 | T2DM严重程度与PD发生风险增加有关[ |
出版 年份 | 研究设计 | 结论 |
---|---|---|
2007 | 前瞻性队列研究 | T2DM与PD发生风险增加有关[ |
2008 | 前瞻性队列研究 | T2DM病史与PD发生风险增加有关,校正混杂因素和排除已知血管疾病受试者后,仍有相关性[ |
2011 | 前瞻性队列研究 | T2DM会增加PD发生风险[ |
2012 | 回顾性队列研究 | 校正其他变量后,T2DM会增加PD发病率[ |
2012 | 病例对照研究 | T2DM是PD症状严重程度的危险因素[ |
2018 | 回顾性队列研究 | T2DM增加PD发生率[ |
2020 | 前瞻性队列研究 | T2DM患者PD风险增加,PD发病率与高血糖暴露程度呈正比[ |
2021 | 前瞻性队列研究 | 血糖控制不佳的T2DM是PD患者运动症状加重的独立危险因素[ |
2021 | 回顾性队列研究 | T2DM前期和T2DM均增加PD发生率[ |
2023 | 回顾性队列研究 | T2DM严重程度与PD发生风险增加有关[ |
[1] | Dorsey ER, Sherer T, Okun MS, et al. The emerging evidence of the parkinson pandemic[J]. J Parkinsons Dis, 2018, 8(s1): S3-S8. |
[2] | 王璐璐, 董露露, 王天俊. 多巴胺转运体99mTc-TRODAT-1 SPECT显像在帕金森病诊断中的研究进展[J]. 临床荟萃, 2022, 37(5): 463-466. |
[3] | 梁战华, 王琰, 赵航, 等. 帕金森病早期运动症状的临床分析[J]. 临床荟萃, 2011, 26(19): 1706-1708. |
[4] | De Pablo-Fernandez E, Goldacre R, Pakpoor J, et al. Association between diabetes and subsequent parkinson disease: A record-linkage cohort study[J]. Neurology, 2018, 91(2): e139-e142. |
[5] |
Wang Y, Bergström J, Ingelsson M, et al. Studies on alpha-synuclein and islet amyloid polypeptide interaction[J]. Front Mol Biosci, 2023, 10: 1080112.
doi: 10.3389/fmolb.2023.1080112 URL |
[6] |
Sandyk R. The relationship between diabetes mellitus and parkinson's disease[J]. Int J Neurosci, 1993, 69(1-4): 125-130.
doi: 10.3109/00207459309003322 pmid: 8082998 |
[7] |
Hu G, Jousilahti P, Bidel S, et al. Type 2 diabetes and the risk of parkinson's disease[J]. Diabetes Care, 2007, 30(4): 842-847.
doi: 10.2337/dc06-2011 pmid: 17251276 |
[8] |
Driver JA, Smith A, Buring JE, et al. Prospective cohort study of type 2 diabetes and the risk of parkinson's disease[J]. Diabetes Care, 2008, 31(10): 2003-2005.
doi: 10.2337/dc08-0688 pmid: 18599528 |
[9] |
Xu Q, Park Y, Huang X, et al. Diabetes and risk of parkinson's disease[J]. Diabetes Care, 2011, 34(4): 910-915.
doi: 10.2337/dc10-1922 pmid: 21378214 |
[10] |
Sun Y, Chang YH, Chen HF, et al. Risk of parkinson disease onset in patients with diabetes: A 9-year population-based cohort study with age and sex stratifications[J]. Diabetes Care, 2012, 35(5): 1047-1049.
doi: 10.2337/dc11-1511 pmid: 22432112 |
[11] |
Kotagal V, Albin RL, Müller ML, et al. Clinical features of parkinson disease when onset of diabetes came first: A case-control study[J]. Neurology, 2012, 79(17): 1835-1836.
doi: 10.1212/WNL.0b013e3182742edb pmid: 23091078 |
[12] | Melgoza IP, Jilani R, Shehzad Z, et al. Comment on rhee et al. association between glycemic status and the risk of parkinson disease: A nationwide population-based study.[J]. Diabetes Care, 2021, 44(5): e95-e96. |
[13] |
Ou R, Wei Q, Hou Y, et al. Effect of diabetes control status on the progression of parkinson's disease: A prospective study[J]. Ann Clin Transl Neurol, 2021, 8(4): 887-897.
doi: 10.1002/acn3.v8.4 URL |
[14] |
Sánchez-Gómez A, Díaz Y, Duarte-Salles T, et al. Prediabetes, type 2 diabetes mellitus and risk of parkinson's disease: A population-based cohort study[J]. Parkinsonism Relat Disord, 2021, 89: 22-27.
doi: 10.1016/j.parkreldis.2021.06.002 URL |
[15] |
Han K, Kim B, Lee SH, et al. A nationwide cohort study on diabetes severity and risk of parkinson disease[J]. NPJ Parkinsons Dis, 2023, 9(1): 11.
doi: 10.1038/s41531-023-00462-8 pmid: 36707543 |
[16] |
Rhea EM, Rask-Madsen C, Banks WA. Insulin transport across the blood-brain barrier can occur independently of the insulin receptor[J]. J Physiol, 2018, 596(19): 4753-4765.
doi: 10.1113/tjp.2018.596.issue-19 URL |
[17] |
Pomytkin I, Costa-Nunes JP, Kasatkin V, et al. insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment[J]. CNS Neurosci Ther, 2018, 24(9): 763-774.
doi: 10.1111/cns.12866 pmid: 29691988 |
[18] |
Morris JK, Bomhoff GL, Gorres BK, et al. Insulin resistance impairs nigrostriatal dopamine function[J]. Exp Neurol, 2011, 231(1): 171-180.
doi: 10.1016/j.expneurol.2011.06.005 pmid: 21703262 |
[19] |
Wang L, Zhai YQ, Xu LL, et al. Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice[J]. Exp Neurol, 2014, 251: 22-29.
doi: 10.1016/j.expneurol.2013.11.001 pmid: 24220636 |
[20] |
Chou SY, Chan L, Chung CC, et al. Altered insulin receptor substrate 1 phosphorylation in blood neuron-derived extracellular vesicles from patients with parkinson's disease[J]. Front Cell Dev Biol, 2020, 8: 564641.
doi: 10.3389/fcell.2020.564641 URL |
[21] | Hogg E, Athreya K, Basile C, et al. High prevalence of undiagnosed insulin resistance in non-diabetic subjects with parkinson's disease[J]. J Parkinsons Dis, 2018, 8(2): 259-265. |
[22] |
Hipkiss AR. On the Relationship between energy metabolism, proteostasis, aging and parkinson's disease: Possible causative role of methylglyoxal and alleviative potential of carnosine[J]. Aging Dis, 2017, 8(3): 334-345.
doi: 10.14336/AD.2016.1030 |
[23] | 刘媛媛, 姚丽芬, 徐春晶, 等. 帕金森病患者血清中sRAGE水平及其临床意义[J]. 神经疾病与精神卫生, 2014, 14(2): 191-193. |
[24] | Chung SS, Ho EC, Lam KS, et al. Contribution of polyol pathway to diabetes-induced oxidative stress[J]. J Am Soc Nephrol, 2003, 14(< W>8 Suppl 3): S233-S236. |
[25] | Pang L, Lian X, Liu H, et al. Understanding diabetic neuropathy: Focus on oxidative stress[J]. Oxid Med Cell Longev, 2020, 2020: 9524635. |
[26] | Alipour M, Salehi I, Ghadiri SF. Effect of exercise on diabetes-induced oxidative stress in the rat hippocampus[J]. Iran Red Crescent Med J, 2012, 14(4): 222-228. |
[27] |
Franco-Iborra S, Vila M, Perier C. The Parkinson disease mitochondrial hypothesis: Where are we at?[J]. Neuroscientist, 2016, 22(3): 266-277.
doi: 10.1177/1073858415574600 pmid: 25761946 |
[28] |
Benilova I, Karran E, De Strooper B. The toxic aβ oligomer and alzheimer's disease: An emperor in need of clothes[J]. Nat Neurosci, 2012, 15(3): 349-357.
doi: 10.1038/nn.3028 pmid: 22286176 |
[29] |
Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(6): 4094-4125.
doi: 10.1007/s12035-015-9337-5 pmid: 26198567 |
[30] |
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(6048): 1456-1458.
doi: 10.1126/science.1202529 pmid: 21778362 |
[31] |
Ronan JL, Wu W, Crabtree GR. From neural development to cognition: Unexpected roles for chromatin[J]. Nat Rev Genet, 2013, 14(5): 347-359.
doi: 10.1038/nrg3413 pmid: 23568486 |
[32] |
Bartels AL, Willemsen AT, Doorduin J, et al. [11C]-PK11195 PET: Quantification of neuroinflammation and a monitor of anti-inflammatory treatment in parkinson's disease?[J]. Parkinsonism Relat Disord, 2010, 16(1): 57-59.
doi: 10.1016/j.parkreldis.2009.05.005 URL |
[33] |
Renaud J, Bassareo V, Beaulieu J, et al. Dopaminergic neurodegeneration in a rat model of long-term hyperglycemia: Preferential degeneration of the nigrostriatal motor pathway[J]. Neurobiol Aging, 2018, 69: 117-128.
doi: S0197-4580(18)30166-0 pmid: 29890391 |
[34] |
Satrom KM, Ennis K, Sweis BM, et al. Neonatal hyperglycemia induces CXCL10/CXCR3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats[J]. J Neuroinflammation, 2018, 15(1): 82.
doi: 10.1186/s12974-018-1121-9 |
[35] |
Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in parkinson's disease: Mechanisms of action[J]. Drug Discov Today, 2016, 21(5): 802-818.
doi: 10.1016/j.drudis.2016.01.013 pmid: 26851597 |
[36] |
Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes[J]. Lancet, 2006, 368(9548): 1696-1705.
doi: 10.1016/S0140-6736(06)69705-5 pmid: 17098089 |
[37] |
Aarsland D, Påhlhagen S, Ballard CG, et al. Depression in parkinson disease--epidemiology, mechanisms and management[J]. Nat Rev Neurol, 2011, 8(1): 35-47.
doi: 10.1038/nrneurol.2011.189 pmid: 22198405 |
[38] |
Li Y, Liu W, Li L, et al. D-Ala2-GIP-glu-PAL is neuroprotective in a chronic parkinson's disease mouse model and increases BNDF expression while reducing neuroinflammation and lipid peroxidation[J]. Eur J Pharmacol, 2017, 797: 162-172.
doi: S0014-2999(16)30762-2 pmid: 27913104 |
[39] |
Nowell J, Blunt E, Edison P. Incretin and insulin signaling as novel therapeutic targets for alzheimer's and parkinson's disease[J]. Mol Psychiatry, 2023, 28(1): 217-229.
doi: 10.1038/s41380-022-01792-4 |
[40] | Zhang L, Zhang L, Li Y, et al. The novel dual GLP-1/GIP receptor agonist DA-CH5 is superior to single GLP-1 receptor agonists in the MPTP model of parkinson's disease[J]. J Parkinsons Dis, 2020, 10(2): 523-542. |
[41] |
Yuan Z, Li D, Feng P, et al. A novel GLP-1/GIP dual agonist is more effective than liraglutide in reducing inflammation and enhancing GDNF release in the MPTP mouse model of parkinson's disease[J]. Eur J Pharmacol, 2017, 812: 82-90.
doi: S0014-2999(17)30436-3 pmid: 28666800 |
[42] |
Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer's disease[J]. Acta Pharm Sin B, 2022, 12(2): 483-495.
doi: 10.1016/j.apsb.2021.11.003 pmid: 35256930 |
[43] |
Ryu YK, Park HY, Go J, et al. Metformin inhibits the development of L-DOPA-induced dyskinesia in a murine model of parkinson's disease[J]. Mol Neurobiol, 2018, 55(7): 5715-5726.
doi: 10.1007/s12035-017-0752-7 URL |
[44] |
Wahlqvist ML, Lee MS, Hsu CC, et al. Metformin-inclusive sulfonylurea therapy reduces the risk of parkinson's disease occurring with type 2 diabetes in a taiwanese population cohort[J]. Parkinsonism Relat Disord, 2012, 18(6): 753-758.
doi: 10.1016/j.parkreldis.2012.03.010 URL |
[45] | Shi Q, Liu S, Fonseca VA, et al. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus[J]. BMJ Open, 2019, 9(7): e024954. |
[46] |
Qiu X, Wang Q, Hou L, et al. Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse parkinson's disease model[J]. Toxicol Lett, 2021, 349: 1-11.
doi: 10.1016/j.toxlet.2021.05.008 URL |
[47] |
Lietzau G, Magni G, Kehr J, et al. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging[J]. Neurobiol Aging, 2020, 89: 12-23.
doi: S0197-4580(20)30012-9 pmid: 32143981 |
[48] |
Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS[J]. Neuroscience, 2004, 123(1): 131-145.
doi: 10.1016/j.neuroscience.2003.08.064 pmid: 14667448 |
[49] |
Carta AR. PPAR-γ: Therapeutic prospects in parkinson's disease[J]. Curr Drug Targets, 2013, 14(7): 743-751.
pmid: 23469878 |
[50] |
Zhao H, Zhuo L, Sun Y, et al. Thiazolidinedione use and risk of parkinson's disease in patients with type 2 diabetes mellitus[J]. NPJ Parkinsons Dis, 2022, 8(1): 138.
doi: 10.1038/s41531-022-00406-8 pmid: 36271052 |
[51] | Brauer R, Bhaskaran K, Chaturvedi N, et al. Glitazone treatment and incidence of parkinson's disease among people with diabetes: A retrospective cohort study[J]. PLoS Med, 2015, 12(7): e1001854. |
[52] |
Chang YH, Yen SJ, Chang YH, et al. Pioglitazone and statins lower incidence of Parkinson disease in patients with diabetes mellitus[J]. Eur J Neurol, 2021, 28(2): 430-437.
doi: 10.1111/ene.v28.2 URL |
[53] |
Connolly JG, Bykov K, Gagne JJ. Thiazolidinediones and parkinson disease: A cohort study[J]. Am J Epidemiol, 2015, 182(11): 936-944.
doi: 10.1093/aje/kwv109 pmid: 26493264 |
[54] |
Rizzo MR, Barbieri M, Boccardi V, et al. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(9): 1122-1131.
doi: 10.1093/gerona/glu032 URL |
[55] |
ElGamal RZ, Tadros MG, Menze ET. Linagliptin counteracts rotenone's toxicity in non-diabetic rat model of parkinson's disease: Insights into the neuroprotective roles of DJ-1, SIRT-1/Nrf-2 and implications of HIF1-α[J]. Eur J Pharmacol, 2023, 941: 175498.
doi: 10.1016/j.ejphar.2023.175498 URL |
[56] |
Safar MM, Abdelkader NF, Ramadan E, et al. Novel mechanistic insights towards the repositioning of alogliptin in parkinson's disease[J]. Life Sci, 2021, 287: 120132.
doi: 10.1016/j.lfs.2021.120132 URL |
[57] |
Svenningsson P, Wirdefeldt K, Yin L, et al. Reduced incidence of parkinson's disease after dipeptidyl peptidase-4 inhibitors-a nationwide case-control study[J]. Mov Disord, 2016, 31(9): 1422-1423.
doi: 10.1002/mds.26734 URL |
[58] | Heni M, Hennige AM, Peter A, et al. Insulin promotes glycogen storage and cell proliferation in primary human astrocytes[J]. PLoS One, 2011, 6(6): e21594. |
[59] |
Born J, Lange T, Kern W, et al. Sniffing neuropeptides: A transnasal approach to the human brain[J]. Nat Neurosci, 2002, 5(6): 514-516.
doi: 10.1038/nn849 pmid: 11992114 |
[60] |
Kullmann S, Blum D, Jaghutriz BA, et al. Central insulin modulates dopamine signaling in the human striatum[J]. J Clin Endocrinol Metab, 2021, 106(10): 2949-2961.
doi: 10.1210/clinem/dgab410 pmid: 34131733 |
[61] |
Iravanpour F, Dargahi L, Rezaei M, et al. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of parkinson's disease[J]. CNS Neurosci Ther, 2021, 27(3): 308-319.
doi: 10.1111/cns.13609 pmid: 33497031 |
[62] |
Lopez VF, Luque GM, Brie B, et al. Dopaminergic drugs in type 2 diabetes and glucose homeostasis[J]. Pharmacol Res, 2016, 109: 74-80.
doi: 10.1016/j.phrs.2015.12.029 pmid: 26748034 |
[63] |
Tavares G, Marques D, Barra C, et al. Dopamine d2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes[J]. Mol Metab, 2021, 51: 101241.
doi: 10.1016/j.molmet.2021.101241 URL |
[64] |
Andersen IB, Andreassen M, Krogh J. the effect of dopamine agonists on metabolic variables in adults with type 2 diabetes: A systematic review with meta analysis and trial sequential analysis of randomized clinical trials[J]. Diabetes Obes Metab, 2021, 23(1): 58-67.
doi: 10.1111/dom.v23.1 URL |
[1] | Wang Jiuxue, Li Na, Jin Wei, Wang Shuo, Chang Yajun, Wang Tianjun. Correlation between serum uric acid, homocysteine and cystatin C levels with motor symptoms and cognitive function in Parkinson's disease patients [J]. Clinical Focus, 2024, 39(2): 125-129. |
[2] | . [J]. Clinical Focus, 2023, 38(9): 855-858. |
[3] | . [J]. Clinical Focus, 2023, 38(2): 189-192. |
[4] | Li Wenjun, Zhang Ce, Liu Junyan. Improving circulation aggravates the orthostatic hypotension in a patient with Parkinson's disease: A case report [J]. Clinical Focus, 2022, 37(10): 934-937. |
[5] | . [J]. Clinical Focus, 2022, 37(5): 463-466. |
[6] | Guo Chang, Shen Huinan, Sun Yimeng, Wang Dongyu. Correlation between blood lipid and homocysteine and cognitive impairment in Parkinson's disease [J]. Clinical Focus, 2022, 37(2): 128-132. |
[7] | Zhao Hang;Ge Hanming;Liang Zhanhua;Wang Yan. Correlation analysis of individualized treatment compliance and disease progression in patients with Parkinson disease [J]. Clinical Focus, 2015, 30(5): 499-502. |
[8] | SUN Lin-juan;XU Sheng-li;ZHOU Ming;MAO Li-jun;CHEN Biao. Protection of cysteamine on 1-methy1-4-phenylpyridinium induced SH-SY5Y in Parkinson's disease cell model by antioxidant [J]. Clinical Focus, 2014, 29(7): 740-743. |
[9] | SUN Lin-juan;MAO Li-jun;XU Sheng-li;ZHOU Ming;CHEN Biao. Protection of cysteamine on dopaminergic neurons in Parkinson disease mice model by antioxidant [J]. Clinical Focus, 2013, 28(2): 181-0. |
[10] | . [J]. Clinical Focus, 2012, 27(15): 1359-0. |
[11] | ZENG Wen-jing;ZHANG Xiao-ying;LI Yan-yun;LIU Yan;LI Yan. Relationship between polymorphism of monoamine oxidase B gene and Parkinson disease in Xinjiang Uygurs [J]. Clinical Focus, 2012, 27(9): 764-766. |
[12] | . [J]. CLINICAL FOCUS, 2011, 26(10): 888901-0. |
[13] | . [J]. CLINICAL FOCUS, 2011, 26(5): 400-0. |
[14] | . [J]. CLINICAL FOCUS, 2010, 25(21): 1931-0. |
[15] | ZHANG Li;KONG Yan;XU Zhuan;CHEN Jian-hua;ZHANG Zheng-chun. Diagnostic value on pronton magnetic resonance spectroscopy of lentiform nucleus in Parkinson disease [J]. CLINICAL FOCUS, 2009, 24(13): 1115-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||