Clinical Focus ›› 2023, Vol. 38 ›› Issue (9): 855-858.doi: 10.3969/j.issn.1004-583X.2023.09.015
Previous Articles Next Articles
Received:
2023-05-31
Online:
2023-09-20
Published:
2023-11-21
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.09.015
[1] |
Nguyen PH, Ramamoorthy A, Sahoo BR, et al. Amyloid oligomers: A joint experimental/computational perspective on alzheimer's disease, parkinson's disease, type ii diabetes, and amyotrophic lateral sclerosis[J]. Chem Rev, 2021, 121(4):2545-2647.
doi: 10.1021/acs.chemrev.0c01122 pmid: 33543942 |
[2] |
Zhang LY, Jin QQ, Hölscher C, et al. Glucagon-like peptide-1/glucose-dependent insulinotropic polypeptide dual receptor agonist DA-CH5 is superior to exendin-4 in protecting neurons in the 6-hydroxydopamine rat parkinson model[J]. Neural Regen Res, 2021, 16(8):1660-1670.
doi: 10.4103/1673-5374.303045 URL |
[3] |
Kopp KO, Glotfelty EJ, Li Y, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: implications for neurodegenerative disease treatment[J]. Pharmacol Res, 2022, 186:106550.
doi: 10.1016/j.phrs.2022.106550 URL |
[4] |
Manfready RA, Forsyth CB, Voigt RM, et al. Gut-brain communication in parkinson's disease: Enteroendocrine regulation by GLP-1[J]. Curr Neurol Neurosci Rep, 2022, 22(7):335-342.
doi: 10.1007/s11910-022-01196-5 |
[5] |
Liu W, Lim KL, Tan EK. Intestine-derived α-synuclein initiates and aggravates pathogenesis of parkinson's disease in Drosophila[J]. Transl Neurodegener, 2022, 11(1):44.
doi: 10.1186/s40035-022-00318-w pmid: 36253844 |
[6] |
Rodrigues PV, de Godoy JVP, Bosque BP, et al. Transcellular propagation of fibrillar α-synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent[J]. Sci Rep, 2022, 12(1):4168.
doi: 10.1038/s41598-022-08076-5 pmid: 35264710 |
[7] | Braak H, Rüb U, Gai WP, et al. Idiopathic parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen[J]. J Neural Transm (Vienna), 2003, 110(5):517-536. |
[8] |
Borghammer P. How does parkinson's disease begin? perspectives on neuroanatomical pathways, prions, and histology[J]. Mov Disord, 2018, 33(1):48-57.
doi: 10.1002/mds.v33.1 URL |
[9] |
Shannon KM, Keshavarzian A, Mutlu E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson's disease[J]. Movement Disorders, 2012, 27(6):709-715.
doi: 10.1002/mds.23838 pmid: 21766334 |
[10] | Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration[J]. PLoS Pathog, 2017, 13(12):e1006654. |
[11] | Dumitrescu L, Marta D, Dănău A, et al. Serum and fecal markers of intestinal inflammation and intestinal barrier permeability are elevated in parkinson's disease[J]. Front Neurosci. 2021, 18(15):689723. |
[12] |
Sampson T, Debelius J, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J]. Cell, 2016, 167(6):1469-1480,e12.
doi: S0092-8674(16)31590-2 pmid: 27912057 |
[13] |
Joers V, Masilamoni G, Kempf D, et al. Microglia, inflammation and gut microbiota responses in a progressive monkey model of parkinson's disease: A case series[J]. Neurobiol Dis, 2020, 144:105027.
doi: 10.1016/j.nbd.2020.105027 URL |
[14] |
Abdel-Haq R, Schlachetzki JCM, Glass CK, et al. Microbiome-microglia connections via the gut-brain axis[J]. J Exp Med, 2019, 216(1):41-59.
doi: 10.1084/jem.20180794 |
[15] | Nishiwaki H, Hamaguchi T, Ito M, et al. Short-chain fatty acid-producing gut microbiota is decreased in parkinson's disease but not in rapid-eye-movement sleep behavior disorder[J]. mSystems, 2020, 5(6):e00797-e007920. |
[16] | Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication[J]. Front Endocrinol (Lausanne), 2020, 31(11):25. |
[17] |
Ducastel S, Touche V, Trabelsi MS, et al. The nuclear receptor FXR inhibits glucagon-like peptide-1 secretion in response to microbiota-derived short-chain fatty acids[J]. Sci Rep, 2020, 10(1):174.
doi: 10.1038/s41598-019-56743-x pmid: 31932631 |
[18] |
Uyar M, Lezius S, Buhmann C, et al. Diabetes, glycated hemoglobin (hba1c), and neuroaxonal damage in parkinson's disease (MARK-PD study)[J]. Mov Disord, 2022, 37(6):1299-1304.
doi: 10.1002/mds.v37.6 URL |
[19] |
Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1[J]. Cell Metab, 2018, 27(4):740-756.
doi: S1550-4131(18)30179-7 pmid: 29617641 |
[20] |
Elabi OF, Davies JS, Lane EL. L-dopa-dependent effects of GLP-1R agonists on the survival of dopaminergic cells transplanted into a rat model of parkinson disease[J]. Int J Mol Sci, 2021, 22(22):12346.
doi: 10.3390/ijms222212346 URL |
[21] |
Cui QN, Stein LM, Fortin SM, et al. The role of glia in the physiology and pharmacology of glucagon-like peptide-1: Implications for obesity, diabetes, neurodegeneration and glaucoma[J]. Br J Pharmacol, 2022, 179(4):715-726.
doi: 10.1111/bph.v179.4 URL |
[22] | Manfready RA, Engen PA, Verhagen ML, et al. Attenuated postprandial GLP-1 response in parkinson's disease[J]. Front Neurosci, 2021, 2(15):660942. |
[23] | 郑鑫, 朱育刚, 王德峰. GLP-1受体激动剂对超重及肥胖2型糖尿病患者胰岛细胞功能影响的系统评价[J]. 临床荟萃, 2019, 34(12):1102-1107. |
[24] |
Zhang ZQ, Hölscher C. GIP has neuroprotective effects in Alzheimer and Parkinson's disease models[J]. Peptides, 2020, 125:170184.
doi: 10.1016/j.peptides.2019.170184 URL |
[25] | Lv M, Xue G, Cheng H, et al. The GLP-1/GIP dual-receptor agonist DA5-CH inhibits the NF-κB inflammatory pathway in the MPTP mouse model of parkinson's disease more effectively than the GLP-1 single-receptor agonist NLY01[J]. Brain Behav, 2021, 11(8):e2231. |
[26] | Chen X, Huang Q, Feng J, et al. GLP-1 alleviates NLRP3 inflammasome-dependent inflammation in perivascular adipose tissue by inhibiting the NF-κB signalling pathway[J]. J Int Med Res, 2021, 49(2):300060521992981. |
[27] | Jalewa J, Sharma MK, Gengler S, et al. A novel GLP-1/GIP dual receptor agonist protects from 6-OHDA lesion in a rat model of parkinson's disease[J]. Neuropharmacology, 2017, 1(117):238-248. |
[28] | Li T, Tu L, Gu R, et al. Neuroprotection of GLP-1/GIP receptor agonist via inhibition、of mitochondrial stress by AKT/JNK pathway in a Parkinson's disease model[J]. Life Sci, 2020, 1(256):117824. |
[29] |
Brauer R, Wei L, Ma T, et al. Diabetes medications and risk of parkinson's disease: A cohort study of patients with diabetes[J]. Brain, 2020, 143(10):3067-3076.
doi: 10.1093/brain/awaa262 pmid: 33011770 |
[1] | Wang Jiuxue, Li Na, Jin Wei, Wang Shuo, Chang Yajun, Wang Tianjun. Correlation between serum uric acid, homocysteine and cystatin C levels with motor symptoms and cognitive function in Parkinson's disease patients [J]. Clinical Focus, 2024, 39(2): 125-129. |
[2] | . [J]. Clinical Focus, 2023, 38(9): 845-850. |
[3] | . [J]. Clinical Focus, 2023, 38(2): 189-192. |
[4] | Li Wenjun, Zhang Ce, Liu Junyan. Improving circulation aggravates the orthostatic hypotension in a patient with Parkinson's disease: A case report [J]. Clinical Focus, 2022, 37(10): 934-937. |
[5] | . [J]. Clinical Focus, 2022, 37(5): 463-466. |
[6] | Guo Chang, Shen Huinan, Sun Yimeng, Wang Dongyu. Correlation between blood lipid and homocysteine and cognitive impairment in Parkinson's disease [J]. Clinical Focus, 2022, 37(2): 128-132. |
[7] | Zhao Hang;Ge Hanming;Liang Zhanhua;Wang Yan. Correlation analysis of individualized treatment compliance and disease progression in patients with Parkinson disease [J]. Clinical Focus, 2015, 30(5): 499-502. |
[8] | SUN Lin-juan;XU Sheng-li;ZHOU Ming;MAO Li-jun;CHEN Biao. Protection of cysteamine on 1-methy1-4-phenylpyridinium induced SH-SY5Y in Parkinson's disease cell model by antioxidant [J]. Clinical Focus, 2014, 29(7): 740-743. |
[9] | SUN Lin-juan;MAO Li-jun;XU Sheng-li;ZHOU Ming;CHEN Biao. Protection of cysteamine on dopaminergic neurons in Parkinson disease mice model by antioxidant [J]. Clinical Focus, 2013, 28(2): 181-0. |
[10] | . [J]. Clinical Focus, 2012, 27(15): 1359-0. |
[11] | ZENG Wen-jing;ZHANG Xiao-ying;LI Yan-yun;LIU Yan;LI Yan. Relationship between polymorphism of monoamine oxidase B gene and Parkinson disease in Xinjiang Uygurs [J]. Clinical Focus, 2012, 27(9): 764-766. |
[12] | . [J]. CLINICAL FOCUS, 2011, 26(10): 888901-0. |
[13] | . [J]. CLINICAL FOCUS, 2011, 26(5): 400-0. |
[14] | . [J]. CLINICAL FOCUS, 2010, 25(21): 1931-0. |
[15] | ZHANG Li;KONG Yan;XU Zhuan;CHEN Jian-hua;ZHANG Zheng-chun. Diagnostic value on pronton magnetic resonance spectroscopy of lentiform nucleus in Parkinson disease [J]. CLINICAL FOCUS, 2009, 24(13): 1115-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||