Clinical Focus ›› 2022, Vol. 37 ›› Issue (8): 759-763.doi: 10.3969/j.issn.1004-583X.2022.08.016
• Original article • Previous Articles Next Articles
Received:
2022-04-04
Online:
2022-08-20
Published:
2022-09-26
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.08.016
[1] |
Magee La, Singer J, Von Dadelszen P, et al. Less-tight versus tight control of hypertension in pregnancy[J]. N Engl J Med, 2015, 372(24): 2366-2368.
doi: 10.1056/NEJMc1503870 URL |
[2] |
Rao K, Malani PN. Diagnosis and treatment of Clostridioides (Clostridium) difficile infection in adults in 2020[J]. JAMA, 2020, 323(14): 1403-1404.
doi: 10.1001/jama.2019.3849 pmid: 32150234 |
[3] |
Juul FE, Garborg K, Bretthauer M, et al. Fecal microbiota transplantation for primary Clostridium difficile infection[J]. N Engl J Med, 2018, 378(26): 2535-2536.
doi: 10.1056/NEJMc1803103 URL |
[4] |
Picca SM. Hyperammonemia after blood transfusion[J]. Ann Intern Med, 2018, 168(4): 306.
doi: 10.7326/L17-0641 pmid: 29459968 |
[5] | Kelly CP. Can we identify patients at high risk of recurrent Clostridium difficile infection?[J]. Clin Microbiol Infect, 2012, 18(Suppl 6):21-27. |
[6] |
Song JH, Kim YS. Recurrent Clostridium difficile infection: Risk factors, treatment, and prevention[J]. Gut Liver, 2019, 13(1): 16-24.
doi: 10.5009/gnl18071 URL |
[7] |
Mcdonald LC, Gerding DN, Johnson S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)[J]. Clin Infect Dis, 2018, 66(7): 987-994.
doi: 10.1093/cid/ciy149 pmid: 29562266 |
[8] |
Chumbler NM, Rutherford SA, Zhang Z, et al. Crystal structure of Clostridium difficile toxin A[J]. Nat Microbiol, 2016, 1:15002.
doi: 10.1038/nmicrobiol.2015.2 pmid: 27571750 |
[9] |
Gupta A, Saha S, Khanna S. Therapies to modulate gut microbiota: Past, present and future[J]. World J Gastroenterol, 2020, 26(8): 777-788.
doi: 10.3748/wjg.v26.i8.777 URL |
[10] | Saha S, Khanna S. Management of Clostridioides difficile colitis: Insights for the gastroenterologist[J]. Therap Adv Gastroenterol, 2019, 5(12): 1756284819847651. |
[11] |
Britton GJ, Contijoch EJ, Spindler MP, et al. Defined microbiota transplant restores Th17/RORgammat(+) regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas[J]. Proc Natl Acad Sci U S A, 2020, 117(35): 21536-21545.
doi: 10.1073/pnas.1922189117 pmid: 32817490 |
[12] |
Di Vincenzo F, Puca P, Lopetuso LR, et al. Bile acid-related regulation of mucosal inflammation and intestinal motility: From pathogenesis to therapeutic application in IBD and microscopic colitis[J]. Nutrients, 2022, 14(13): 2664.
doi: 10.3390/nu14132664 URL |
[13] |
Hvas CL, Dahl Jørgensen SM, Jørgensen SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection[J]. Gastroenterology, 2019, 156(5): 1324-1332.e3.
doi: S0016-5085(18)35434-9 pmid: 30610862 |
[14] |
Lee CH, Steiner T, Petrof EO, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: A randomized clinical trial[J]. JAMA, 2016, 315(2): 142-149.
doi: 10.1001/jama.2015.18098 pmid: 26757463 |
[15] |
Kassam Z, Dubois N, Ramakrishna B, et al. Donor screening for fecal microbiota transplantation[J]. N Engl J Med, 2019, 381(21): 2070-2072.
doi: 10.1056/NEJMc1913670 URL |
[16] |
Park H, Laffin MR, Jovel J, et al. The success of fecal microbial transplantation in Clostridium difficile infection correlates with bacteriophage relative abundance in the donor: A retrospective cohort study[J]. Gut Microbes, 2019, 10(6): 676-687.
doi: 10.1080/19490976.2019.1586037 URL |
[17] | Zuo T, Wong SH, Lam K, et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome[J]. Gut, 2018, 67(4): 634-643. |
[18] |
Kazemian N, Ramezankhani M, Sehgal A, et al. The trans-kingdom battle between donor and recipient gut microbiome influences fecal microbiota transplantation outcome[J]. Sci Rep, 2020, 10(1): 18349.
doi: 10.1038/s41598-020-75162-x pmid: 33110112 |
[19] |
Jiang ZD, Jenq RR, Ajami NJ, et al. Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: A randomized clinical trial[J]. PLoS One, 2018, 13(11): e0205064.
doi: 10.1371/journal.pone.0205064 URL |
[20] |
Ianiro G, Masucci L, Quaranta G, et al. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions[J]. Aliment Pharmacol Ther, 2018, 48(2): 152-159.
doi: 10.1111/apt.14816 URL |
[21] |
Ianiro G, Maida M, Burisch J, et al. Efficacy of different faecal microbiota transplantation protocols for Clostridium difficile infection: A systematic review and meta-analysis[J]. United European Gastroenterol J, 2018, 6(8): 1232-1244.
doi: 10.1177/2050640618780762 URL |
[22] |
Kao D, Roach B, Silva M, et al. Effect of oral capsule-vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: A randomized clinical trial[J]. JAMA, 2017, 318(20): 1985-1993.
doi: 10.1001/jama.2017.17077 URL |
[23] | Rapoport EA, Baig M, Puli SR. Adverse events in fecal microbiota transplantation: A systematic review and meta-analysis[J]. Ann Gastroenterol, 2022, 35(2): 150-163. |
[24] |
Defilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant E.coli bacteremia transmitted by fecal microbiota transplant[J]. N Engl J Med, 2019, 381(21): 2043-2050.
doi: 10.1056/NEJMoa1910437 URL |
[25] |
Zellmer C, Sater MRA, Huntley MH, et al. Shiga toxin-producing Escherichia coli transmission via fecal microbiota transplant[J]. Clin Infect Dis, 2021, 72(11): e876-e880.
doi: 10.1093/cid/ciaa1486 pmid: 33159210 |
[26] |
Orenstein R, Dubberke E, Hardi R, et al. Safety and durability of RBX2660 (microbiota suspension) for recurrent Clostridium difficile infection: Results of the PUNCH CD Study[J]. Clin Infect Dis, 2016, 62(5): 596-602.
doi: 10.1093/cid/civ938 pmid: 26565008 |
[27] |
Dubberke ER, Lee CH, Orenstein R, et al. Results from a randomized, placebo-controlled clinical trial of a RBX2660-A microbiota-based drug for the prevention of recurrent Clostridium difficile infection[J]. Clin Infect Dis, 2018, 67(8): 1198-1204.
doi: 10.1093/cid/ciy259 pmid: 29617739 |
[28] |
Kwak S, Choi J, Hink T, et al. Impact of investigational microbiota therapeutic RBX2660 on the gut microbiome and resistome revealed by a placebo-controlled clinical trial[J]. Microbiome, 2020, 8(1): 125.
doi: 10.1186/s40168-020-00907-9 pmid: 32862830 |
[29] |
Orenstein R, Dubberke ER, Khanna S, et al. Durable reduction of Clostridioides difficile infection recurrence and microbiome restoration after treatment with RBX2660: Results from an open-label phase 2 clinical trial[J]. BMC Infect Dis, 2022, 22(1): 245.
doi: 10.1186/s12879-022-07256-y pmid: 35279084 |
[30] |
Khanna S, Pardi DS, Jones C, et al. RBX7455, a non-frozen, orally administered investigational live biotherapeutic, is safe, effective, and shifts patients' microbiomes in a phase 1 study for recurrent Clostridioides difficile infections[J]. Clin Infect Dis, 2021, 73(7): e1613-e1620.
doi: 10.1093/cid/ciaa1430 pmid: 32966574 |
[31] |
Mcgovern BH, Ford CB, Henn MR, et al. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: Lessons learned from a phase 2 trial[J]. Clin Infect Dis, 2021, 72(12): 2132-2140.
doi: 10.1093/cid/ciaa387 pmid: 32255488 |
[32] |
Khanna S, Pardi DS, Kelly CR, et al. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection[J]. J Infect Dis, 2016, 214(2): 173-181.
doi: 10.1093/infdis/jiv766 pmid: 26908752 |
[33] | Theriot CM, Bowman AA, Young VB. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine[J]. mSphere, 2016, 1(1): e00045-00015. |
[34] |
Khanna S. Microbiota restoration for recurrent Clostridioides difficile: Getting one step closer every day![J]. J Intern Med, 2021, 290(2): 294-309.
doi: 10.1111/joim.13290 pmid: 33856727 |
[35] |
Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics[J]. Gastroenterology, 2004, 126(6): 1620-1633.
pmid: 15168372 |
[36] |
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, et al. Immune-mediated mechanisms of action of probiotics and synbiotics in treating pediatric intestinal diseases[J]. Nutrients, 2018, 10(1): 42.
doi: 10.3390/nu10010042 URL |
[37] |
Hudson LE, Anderson SE, Corbett AH, et al. Gleaning insights from fecal microbiota transplantation and probiotic studies for the rational design of combination microbial therapies[J]. Clin Microbiol Rev, 2017, 30(1): 191-231.
pmid: 27856521 |
[38] |
Mills JP, Rao K, Young VB. Probiotics for prevention of Clostridium difficile infection[J]. Curr Opin Gastroenterol, 2018, 34(1): 3-10.
doi: 10.1097/MOG.0000000000000410 URL |
[39] |
Koh E, Hwang IY, Lee HL, et al. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism[J]. Nat Commun, 2022, 13(1): 3834.
doi: 10.1038/s41467-022-31334-z pmid: 35787625 |
[40] |
Wang L, Cao H, Liu L, et al. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a Lactobacillus rhamnosus GG-derived protein[J]. J Biol Chem, 2014, 289(29): 20234-20244.
doi: 10.1074/jbc.M114.553800 pmid: 24895124 |
[41] |
Wan LY, Chen ZJ, Shah NP, et al. Modulation of intestinal epithelial defense responses by probiotic bacteria[J]. Crit Rev Food Sci Nutr, 2016, 56(16): 2628-2641.
doi: 10.1080/10408398.2014.905450 pmid: 25629818 |
[42] |
Gunaratnam S, Diarra C, Paquette PD, et al. The acid-dependent and independent effects of lactobacillus acidophilus CL1285, Lacticaseibacillus casei LBC80R, and Lacticaseibacillus rhamnosus CLR2 on Clostridioides difficile R20291[J]. Probiotics Antimicrob Proteins, 2021, 13(4): 949-956.
doi: 10.1007/s12602-020-09729-5 pmid: 33492661 |
[43] |
Shen NT, Maw A, Tmanova LL, et al. Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: A systematic review with meta-regression analysis[J]. Gastroenterology, 2017, 152(8): 1889-1900.
doi: S0016-5085(17)30136-1 pmid: 28192108 |
[44] | Chen K, Zhu Y, Zhang Y, et al. A probiotic yeast-based immunotherapy against Clostridioides difficile infection[J]. Sci Transl Med, 2020, 12(567): aax4905. |
[45] |
Gerding DN, Meyer T, Lee C, et al. Administration of spores of nontoxigenic Clostridium difficile strain M3 for prevention of recurrent C.difficile infection: A randomized clinical trial[J]. JAMA, 2015, 313(17): 1719-1727.
doi: 10.1001/jama.2015.3725 pmid: 25942722 |
[1] | Chun Mei, Zhen Jin, Yan Yan, Liu Bin, Li Min, Sun Xia. A case of neurological brucellosis misdiagnosed as amyotrophic lateral sclerosis and literature review [J]. Clinical Focus, 2023, 38(12): 1101-1106. |
[2] | Liu Lifang, Wang Xiaotong, Li Zhuo, Yang Ru, Liu Hua. Clinical analysis of 13 cases of brucellosis spondylitis [J]. Clinical Focus, 2022, 37(11): 1021-1024. |
[3] | Wang Tengyan, He Yajun, Shu Jianchang. Rebamipide in the treatment of nonsteroidal anti-inflammatory drug-associated intestinal disease: A meta-analysis [J]. Clinical Focus, 2022, 37(8): 685-690. |
[4] | Zhou Yao, Wei Botao. Zinc adjuvant in treatment of rotavirus enteritis in children and how to effect on short-term recurrence: a Meta analysis [J]. Clinical Focus, 2022, 37(2): 106-113. |
[5] | . [J]. Clinical Focus, 2015, 30(2): 234-237. |
[6] | . [J]. Clinical Focus, 2015, 30(1): 98-99100. |
[7] | . @@ [J]. Clinical Focus, 2014, 29(10): 1195-1196. |
[8] | . [J]. Clinical Focus, 2014, 29(8): 953-954955. |
[9] | . [J]. CLINICAL FOCUS, 2014, 29(2): 208-209. |
[10] | . [J]. Clinical Focus, 2013, 28(4): 421-422. |
[11] | . [J]. Clinical Focus, 2012, 27(23): 2097-0. |
[12] | . [J]. Clinical Focus, 2012, 27(23): 0-0. |
[13] | GUO Hao;WANG Hai-yan;QI Hong-hui;ZHANG Tian-min;HU Zhen-jie. Relationship between expression of membrance-associated CD14 on peripheral blood mononuclear cell with severe sepsis and clinical outcome [J]. CLINICAL FOCUS, 2010, 25(11): 946-948. |
[14] | . [J]. CLINICAL FOCUS, 2010, 25(6): 535-0. |
[15] | . [J]. CLINICAL FOCUS, 2009, 24(24): 2172-2172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||