Clinical Focus ›› 2022, Vol. 37 ›› Issue (9): 846-854.doi: 10.3969/j.issn.1004-583X.2022.09.017
Previous Articles Next Articles
Received:
2022-07-23
Online:
2022-09-20
Published:
2022-11-21
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.09.017
[1] |
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048.
doi: 10.1016/j.metabol.2015.12.012 URL |
[2] |
Bian Z, Gong Y, Huang T, et al. Deciphering human macrophage development at single-cell resolution[J]. Nature, 2020, 582(7813): 571-576.
doi: 10.1038/s41586-020-2316-7 URL |
[3] |
Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in NASH[J]. J Hepatol, 2018, 68(2): 238-250.
doi: S0168-8278(17)32435-2 pmid: 29154966 |
[4] |
Tosello-Trampont AC, Landes SG, Nguyen V, et al. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production[J]. J Biol Chem, 2012, 287(48): 40161-40172.
doi: 10.1074/jbc.M112.417014 pmid: 23066023 |
[5] |
Tacke F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312.
doi: S0168-8278(17)30125-3 pmid: 28267621 |
[6] |
Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance[J]. Diabetes, 2010, 59(2): 347-357.
doi: 10.2337/db09-0016 pmid: 19934001 |
[7] | Zhu Y, Ruan S, Shen H, et al. Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB[J]. Int Immunopharmacol, 2021, 101(Pt B): 108290. |
[8] |
Tran S, Baba I, Poupel L, et al. Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis[J]. Immunity, 2020, 53(3): 627-640.e625.
doi: S1074-7613(20)30233-8 pmid: 32562600 |
[9] |
Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426.
doi: 10.1136/gutjnl-2011-300304 pmid: 21813474 |
[10] | Pan J, Ou Z, Cai C, et al. Fatty acid activates NLRP3 inflammasomes in mouse Kupffer cells through mitochondrial DNA release[J]. Cell Immunol, 2018, 332(111-120. |
[11] |
Yu Y, Liu Y, An W, et al. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019, 129(2): 546-555.
doi: 10.1172/JCI121842 pmid: 30561388 |
[12] |
Miyao M, Kotani H, Ishida T, et al. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression[J]. Lab Invest, 2015, 95(10): 1130-1144.
doi: 10.1038/labinvest.2015.95 pmid: 26214582 |
[13] |
Schuster S, Cabrera D, Arrese M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364.
doi: 10.1038/s41575-018-0009-6 pmid: 29740166 |
[14] |
Jenne CN, Kubes P. Immune surveillance by the liver[J]. Nat Immunol, 2013, 14(10): 996-1006.
doi: 10.1038/ni.2691 pmid: 24048121 |
[15] |
Henning JR, Graffeo CS, Rehman A, et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice[J]. Hepatology, 2013, 58(2): 589-602.
doi: 10.1002/hep.26267 pmid: 23322710 |
[16] |
Aarts S, Reiche M, den Toom M, et al. Depletion of CD40 on CD11c(+) cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH[J]. Sci Rep, 2019, 9(1): 14702.
doi: 10.1038/s41598-019-50976-6 URL |
[17] |
McPherson S, Hardy T, Henderson E, et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management[J]. J Hepatol, 2015, 62(5): 1148-1155.
doi: 10.1016/j.jhep.2014.11.034 pmid: 25477264 |
[18] |
Connolly MK, Bedrosian AS, Mallen-St Clair J, et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha[J]. J Clin Invest, 2009, 119(11): 3213-3225.
doi: 10.1172/JCI37581 pmid: 19855130 |
[19] |
Haas JT, Vonghia L, Mogilenko DA, et al. Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution[J]. Nat Metab, 2019, 1(6): 604-614.
doi: 10.1038/s42255-019-0076-1 pmid: 31701087 |
[20] |
Harmon C, Robinson MW, Fahey R, et al. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver[J]. Eur J Immunol, 2016, 46(9): 2111-2120.
doi: 10.1002/eji.201646559 pmid: 27485474 |
[21] |
Moretta L, Montaldo E, Vacca P, et al. Human natural killer cells: Origin, receptors, function, and clinical applications[J]. Int Arch Allergy Immunol, 2014, 164(4): 253-264.
doi: 10.1159/000365632 URL |
[22] |
Norris S, Collins C, Doherty DG, et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes[J]. J Hepatol, 1998, 28(1): 84-90.
pmid: 9537869 |
[23] |
Bachiller M, Battram AM, Perez-Amill L, et al. Natural killer cells in immunotherapy: Are we nearly there?[J]. Cancers (Basel), 2020, 12(11): 3139.
doi: 10.3390/cancers12113139 URL |
[24] |
Peng H, Jiang X, Chen Y, et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation[J]. J Clin Invest, 2013, 123(4): 1444-1456.
doi: 10.1172/JCI66381 pmid: 23524967 |
[25] | Jin H, Jia Y, Yao Z, et al. Hepatic stellate cell interferes with NK cell regulation of fibrogenesis via curcumin induced senescence of hepatic stellate cell[J]. Cell Signal, 2017, 33(79-85. |
[26] |
Vermijlen D, Luo D, Froelich CJ, et al. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway[J]. J Leukoc Biol, 2002, 72(4): 668-676.
doi: 10.1189/jlb.72.4.668 URL |
[27] |
Lynch L, Nowak M, Varghese B, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production[J]. Immunity, 2012, 37(3): 574-587.
doi: 10.1016/j.immuni.2012.06.016 pmid: 22981538 |
[28] |
Ji Y, Sun S, Xu A, et al. Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity[J]. J Biol Chem, 2012, 287(17): 13561-13571.
doi: 10.1074/jbc.M112.350066 pmid: 22396530 |
[29] |
Hams E, Locksley RM, McKenzie AN, et al. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice[J]. J Immunol, 2013, 191(11): 5349-5353.
doi: 10.4049/jimmunol.1301176 pmid: 24166975 |
[30] |
Michelet X, Dyck L, Hogan A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol, 2018, 19(12): 1330-1340.
doi: 10.1038/s41590-018-0251-7 pmid: 30420624 |
[31] |
Diedrich T, Kummer S, Galante A, et al. Characterization of the immune cell landscape of patients with NAFLD[J]. PLoS One, 2020, 15(3): e0230307.
doi: 10.1371/journal.pone.0230307 URL |
[32] |
Tian Z, Sun R, Wei H, et al. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: Leptin as a critical regulator in NK cell development and activation[J]. Biochem Biophys Res Commun, 2002, 298(3): 297-302.
doi: 10.1016/S0006-291X(02)02462-2 URL |
[33] |
Liu K, Wang FS, Xu R. Neutrophils in liver diseases: Pathogenesis and therapeutic targets[J]. Cell Mol Immunol, 2021, 18(1): 38-44.
doi: 10.1038/s41423-020-00560-0 pmid: 33159158 |
[34] |
Zhou Z, Xu MJ, Cai Y, et al. Neutrophil-hepatic stellate cell interactions promote fibrosis in experimental steatohepatitis[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(3): 399-413.
doi: 10.1016/j.jcmgh.2018.01.003 pmid: 29552626 |
[35] |
Khoury T, Mari A, Nseir W, et al. Neutrophil-to-lymphocyte ratio is independently associated with inflammatory activity and fibrosis grade in nonalcoholic fatty liver disease[J]. Eur J Gastroenterol Hepatol, 2019, 31(9): 1110-1115.
doi: 10.1097/MEG.0000000000001393 URL |
[36] |
van der Windt DJ, Sud V, Zhang H, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis[J]. Hepatology, 2018, 68(4): 1347-1360.
doi: 10.1002/hep.29914 pmid: 29631332 |
[37] |
Ou R, Liu J, Lv M, et al. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice[J]. Endocrine, 2017, 57(1): 72-82.
doi: 10.1007/s12020-017-1323-4 pmid: 28508193 |
[38] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.
doi: 10.1016/j.cell.2010.01.022 pmid: 20303872 |
[39] |
Pedra JH, Cassel SL, Sutterwala FS. Sensing pathogens and danger signals by the inflammasome[J]. Curr Opin Immunol, 2009, 21(1): 10-16.
doi: 10.1016/j.coi.2009.01.006 pmid: 19223160 |
[40] |
Arrese M, Cabrera D, Kalergis AM, et al. Innate immunity and inflammation in NAFLD/NASH[J]. Dig Dis Sci, 2016, 61(5): 1294-1303.
doi: 10.1007/s10620-016-4049-x URL |
[41] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384.
doi: 10.1038/ni.1863 pmid: 20404851 |
[42] |
Rivera CA, Gaskin L, Allman M, et al. Toll-like receptor-2 deficiency enhances non-alcoholic steatohepatitis[J]. BMC Gastroenterol, 2010, 10:52.
doi: 10.1186/1471-230X-10-52 pmid: 20509914 |
[43] |
Miura K, Yang L, van Rooijen N, et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice[J]. Hepatology, 2013, 57(2): 577-589.
doi: 10.1002/hep.26081 pmid: 22987396 |
[44] |
Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD[J]. Hepatology, 2020, 72(2): 470-485.
doi: 10.1002/hep.31056 pmid: 31808577 |
[45] | Cai J, Xu M, Zhang X, et al. Innate immune signaling in nonalcoholic fatty liver disease and cardiovascular diseases[J]. Annu Rev Pathol, 2019, 14(153-184. |
[46] |
Spruss A, Kanuri G, Wagnerberger S, et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice[J]. Hepatology, 2009, 50(4): 1094-1104.
doi: 10.1002/hep.23122 pmid: 19637282 |
[47] |
Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3): G433-441.
doi: 10.1152/ajpgi.00163.2009 URL |
[48] |
Guo J, Friedman SL. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis[J]. Fibrogenesis Tissue Repair, 2010, 3:21.
doi: 10.1186/1755-1536-3-21 URL |
[49] |
Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice[J]. Gastroenterology, 2010, 139(1): 323-334.e327.
doi: 10.1053/j.gastro.2010.03.052 pmid: 20347818 |
[50] |
Alegre NS, Garcia CC, Billordo LA, et al. Limited expression of TLR9 on T cells and its functional consequences in patients with nonalcoholic fatty liver disease[J]. Clin Mol Hepatol, 2020, 26(2): 216-226.
doi: 10.3350/cmh.2019.0074 pmid: 31795627 |
[51] |
Takeuchi M, Takino JI, Sakasai-Sakai A, et al. Toxic AGE (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD[J]. Nutrients, 2017, 9(6) 634:
doi: 10.3390/nu9060634 URL |
[52] |
Son S, Hwang I, Han SH, et al. Advanced glycation end products impair NLRP3 inflammasome-mediated innate immune responses in macrophages[J]. J Biol Chem, 2017, 292(50): 20437-20448.
doi: 10.1074/jbc.M117.806307 pmid: 29051224 |
[53] |
Leung C, Herath CB, Jia Z, et al. Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(35): 8026-8040.
doi: 10.3748/wjg.v22.i35.8026 URL |
[54] |
Fernando DH, Forbes JM, Angus PW, et al. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products[J]. Int J Mol Sci, 2019, 20(20):5037.
doi: 10.3390/ijms20205037 URL |
[55] |
Palma-Duran SA, Kontogianni MD, Vlassopoulos A, et al. Serum levels of advanced glycation end-products (AGEs) and the decoy soluble receptor for AGEs (sRAGE) can identify non-alcoholic fatty liver disease in age-, sex- and BMI-matched normo-glycemic adults[J]. Metabolism, 2018, 83:120-127.
doi: 10.1016/j.metabol.2018.01.023 URL |
[56] |
de Carvalho Ribeiro M, Szabo G. Role of the Inflammasome in liver disease[J]. Annu Rev Pathol, 2022, 17:345-365.
doi: 10.1146/annurev-pathmechdis-032521-102529 URL |
[57] |
Sui YH, Luo WJ, Xu QY, et al. Dietary saturated fatty acid and polyunsaturated fatty acid oppositely affect hepatic NOD-like receptor protein 3 inflammasome through regulating nuclear factor-kappa B activation[J]. World J Gastroenterol, 2016, 22(8): 2533-2544.
doi: 10.3748/wjg.v22.i8.2533 URL |
[58] |
Mridha AR, Wree A, Robertson AAB, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017, 66(5): 1037-1046.
doi: S0168-8278(17)30056-9 pmid: 28167322 |
[59] |
Li X, Shi Z, Zhu Y, et al. Cyanidin-3-O-glucoside improves non-alcoholic fatty liver disease by promoting PINK1-mediated mitophagy in mice[J]. Br J Pharmacol, 2020, 177(15): 3591-3607.
doi: 10.1111/bph.15083 URL |
[60] |
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response[J]. Mol Metab, 2017, 6(2): 174-184.
doi: S2212-8778(16)30244-7 pmid: 28180059 |
[61] |
Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice[J]. Hepatology, 2006, 43(1): 163-172.
pmid: 16374858 |
[62] |
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance[J]. Nature, 2002, 420(6913): 333-336.
doi: 10.1038/nature01137 URL |
[63] |
Singh R, Wang Y, Xiang Y, et al. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance[J]. Hepatology, 2009, 49(1): 87-96.
doi: 10.1002/hep.22578 pmid: 19053047 |
[64] |
Tuncman G, Hirosumi J, Solinas G, et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance[J]. Proc Natl Acad Sci U S A, 2006, 103(28): 10741-10746.
pmid: 16818881 |
[65] |
González-Terán B, Matesanz N, Nikolic I, et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration[J]. Embo J, 2016, 35(5): 536-552.
doi: 10.15252/embj.201591857 pmid: 26843485 |
[66] | Morrison DK. MAP kinase pathways[J]. Cold Spring Harb Perspect Biol, 2012, 4(11): a011254. |
[67] |
Hemi R, Yochananov Y, Barhod E, et al. p38 mitogen-activated protein kinase-dependent transactivation of ErbB receptor family: A novel common mechanism for stress-induced IRS-1 serine phosphorylation and insulin resistance[J]. Diabetes, 2011, 60(4): 1134-1145.
doi: 10.2337/db09-1323 pmid: 21386087 |
[68] |
Zhang X, Fan L, Wu J, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization[J]. J Hepatol, 2019, 71(1): 163-174.
doi: S0168-8278(19)30184-9 pmid: 30914267 |
[69] |
Liu J, Dalamaga M. Emerging roles for stress kinase p38 and stress hormone fibroblast growth factor 21 in NAFLD development[J]. Metabol Open, 2021, 12: 100153.
doi: 10.1016/j.metop.2021.100153 URL |
[70] |
Wang H, Liu Y, Wang D, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases[J]. Cells, 2019, 8(12): 1597.
doi: 10.3390/cells8121597 URL |
[71] |
Liu TY, Xiong XQ, Ren XS, et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-mediated autophagy, fatty acid oxidation, and lipogenesis in mice[J]. Diabetes, 2016, 65(11): 3262-3275.
doi: 10.2337/db16-0356 URL |
[72] |
Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376.
doi: 10.1007/s00535-017-1415-1 pmid: 29247356 |
[73] |
Chalasani N, Abdelmalek MF, Garcia-Tsao G, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension[J]. Gastroenterology, 2020, 158(5): 1334-1345.e1335.
doi: S0016-5085(19)41895-7 pmid: 31812510 |
[74] | Diehl A, Harrison S, Caldwell S, et al. JKB-121 in patients with nonalcoholic steatohepatitis: A phase 2 double blind randomized placebo control study[J]. Journal of Hepatology, 2018, 68(S103. |
[75] |
Ilan Y, Shailubhai K, Sanyal A. Immunotherapy with oral administration of humanized anti-CD3 monoclonal antibody: A novel gut-immune system-based therapy for metaflammation and NASH[J]. Clin Exp Immunol, 2018, 193(3): 275-283.
doi: 10.1111/cei.13159 pmid: 29920654 |
[76] |
Sumpter TL, Thomson AW. The STATus of PD-L1 (B7-H1) on tolerogenic APCs[J]. Eur J Immunol, 2011, 41(2): 286-290.
doi: 10.1002/eji.201041353 pmid: 21267998 |
[77] |
Hu Q, Zhang W, Wu Z, et al. Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects[J]. Pharmacol Res, 2021, 165: 105444.
doi: 10.1016/j.phrs.2021.105444 URL |
[78] |
Xu G, Fu S, Zhan X, et al. Echinatin effectively protects against NLRP3 inflammasome-driven diseases by targeting HSP90[J]. JCI Insight, 2021, 6(2): e134601.
doi: 10.1172/jci.insight.134601 URL |
[79] | 徐拥建, 杨钦河, 韩莉, 等. 疏肝健脾方药对NAFLD大鼠肝细胞SREBP-1c、SCD-1 mRNA及蛋白表达的影响[J]. 中药材, 2014, 37(1): 80-86. |
[80] | 章常华, 马广强, 邓永兵, 等. 葛根芩连汤对KK-Ay糖尿病小鼠血浆中LPS、TNF-α、IL-6及肠道菌群的影响[J]. 中草药, 2017, 48(8): 1611-1616. |
[81] | 谢添弘, 陈润花, 毛唐友, 等. 茵陈二陈汤对非酒精性脂肪性肝炎模型细胞JNK1、AP-1蛋白表达的影响[J]. 中国中西医结合消化杂志, 2017, 25(12): 943-947. |
[82] |
Wei X, Hou W, Liang J, et al. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease[J]. Front Pharmacol, 2021, 12: 693701.
doi: 10.3389/fphar.2021.693701 URL |
[1] | . [J]. Clinical Focus, 2023, 38(10): 935-939. |
[2] | . [J]. Clinical Focus, 2023, 38(6): 559-563. |
[3] | . [J]. Clinical Focus, 2023, 38(4): 373-376. |
[4] | Cao Yumeng, Zhang Haiyan, Liu Lixin. Correlation between pathological changes and serum ferritin and iron levels in nonalcoholic fatty liver disease: A meta-analysis [J]. Clinical Focus, 2023, 38(3): 197-207. |
[5] | Zhang Limin, Sun Jun. Predictive value of FIB-4 in patients with metabolic-associated fatty liver disease complicated with colorectal adenomatous polyps [J]. Clinical Focus, 2022, 37(4): 334-338. |
[6] | Wen Jie. Correlation analysis between atherogenic index of plasma and nonalcoholic fatty liver disease [J]. Clinical Focus, 2022, 37(1): 35-38. |
[7] | Li Guohuan, Xie Xu, Huang Zhixia, Zhang Mingye, Tang Yunyun. Quantitative evaluation of transient elastography and acoustic radiation force pulse imaging for non-alcoholic fatty liver disease [J]. Clinical Focus, 2021, 36(6): 535-539. |
[8] | Zhang Ying, Wang Chunsheng. Effects of Jiangzhi Ligan Granules combined with simvastatin on hepatic biochemical indexes, leptin and adiponectin in treatment of NAFLD [J]. Clinical Focus, 2021, 36(1): 58-61. |
[9] | Lu Xiaomin;Wang Zhenning;Yang Jun;Cui Zheng. Detection of serum iron in alcoholic and non-alcoholic fatty liver disease [J]. Clinical Focus, 2015, 30(9): 1033-1035. |
[10] | WAN Shun-mei;WU Yong-sheng;ZHU Ping;LI Wan-jun;WAN Ping-xin;YANG Wei-jie;PAN Li. Significance of oxygen free radical metabolism in nonalcoholic fatty liver in high-altitude regions [J]. Clinical Focus, 2014, 29(6): 670-671672. |
[11] | . [J]. CLINICAL FOCUS, 2014, 29(4): 474-477. |
[12] | . [J]. Clinical Focus, 2013, 28(5): 540-542. |
[13] | ZHANG Zi-yu;LUO Wen-ming. Relationship of fatty liver detected by B-ultrasound with serum lipid level and hepatic function [J]. Clinical Focus, 2012, 27(23): 2050-2052. |
[14] | . [J]. Clinical Focus, 2012, 27(22): 1977-1979. |
[15] | . [J]. Clinical Focus, 2012, 27(17): 1512-1513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||