Clinical Focus ›› 2022, Vol. 37 ›› Issue (11): 1053-1056.doi: 10.3969/j.issn.1004-583X.2022.11.017
Received:
2022-10-06
Online:
2022-11-20
Published:
2023-01-02
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2022.11.017
[1] |
Berger J, Hinglais N. Les ddpôts intercapillaires d'IgA-IgG [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris), 1968, 74(9):694-695.
pmid: 4180586 |
[2] |
Rajasekaran A, Julian BA, Rizk DV. IgA nephropathy: An interesting autoimmune kidney disease[J]. Am J Med Sci, 2021, 361(2):176-194.
doi: 10.1016/j.amjms.2020.10.003 pmid: 33309134 |
[3] |
Lai KN, Tang SC, Schena FP, et al. IgA nephropathy[J]. Nat Rev Dis Primers, 2016, 2:16001.
doi: 10.1038/nrdp.2016.1 pmid: 27189177 |
[4] |
Liu ZH. Nephrology in China[J]. Nat Rev Nephrol, 2013, 9(9):523-528.
doi: 10.1038/nrneph.2013.146 URL |
[5] |
Maixnerova D, Tesar V. Emerging modes of treatment of IgA nephropathy[J]. Int J Mol Sci, 2020, 21(23):9064.
doi: 10.3390/ijms21239064 URL |
[6] |
Heerspink H, Perco P, Mulder S, et al. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease[J]. Diabetologia, 2019, 62(7):1154-1166.
doi: 10.1007/s00125-019-4859-4 pmid: 31001673 |
[7] |
Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development:Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors[J]. J Am Soc Nephrol, 2020, 31(5):907-919.
doi: 10.1681/ASN.2020010010 URL |
[8] |
Kobayashi K, Toyoda M, Hatori N, et al. Retrospective analysis of the renoprotective effects of long-term use of six types of sodium-glucose cotransporter 2 inhibitors in Japanese patients with type 2 diabetes mellitus and chronic kidney disease[J]. Diabetes Technol Ther, 2021, 23(2):110-119.
doi: 10.1089/dia.2020.0165 URL |
[9] |
Wan N, Rahman A, Hitomi H, et al. The effects of sodium-glucose cotransporter 2 inhibitors on sympathetic nervous activity[J]. Front Endocrinol (Lausanne), 2018, 9:421.
doi: 10.3389/fendo.2018.00421 URL |
[10] | Hussain M, Elahi A, Hussain A, et al. Sodium-glucose cotransporter-2 (SGLT-2) attenuates serum uric acid (SUA) level in patients with type 2 diabetes[J]. J Diabetes Res, 2021, 2021:9973862. |
[11] |
Barbour S, Reich H. An update on predicting renal progression in IgA nephropathy[J]. Curr Opin Nephrol Hypertens, 2018, 27(3):214-220.
doi: 10.1097/MNH.0000000000000405 URL |
[12] |
陈天新, 陈波, 陈薪薪, 等. 伴与不伴原发性肾病的恶性高血压肾损害临床病理特点及预后对比分析[J]. 中华肾脏病杂志, 2019, 35(12):906-913.
doi: 10.3760/cma.j.issn.1001-7097.2019.12.005 |
[13] |
Kario K, Ferdinand KC, O'Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease[J]. Prog Cardiovasc Dis, 2020, 63(3):249-262.
doi: S0033-0620(20)30074-8 pmid: 32275926 |
[14] |
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med, 2017, 377(7):644-657.
doi: 10.1056/NEJMoa1611925 URL |
[15] |
Sarraju A, Spencer-Bonilla G, Rodriguez F, et al. Canagliflozin and cardiovascular outcomes in type 2 diabetes[J]. Future Cardiol, 2021, 17(1):39-48.
doi: 10.2217/fca-2020-0029 URL |
[16] |
Mosenzon O, Wiviott SD, Heerspink H, et al. The effect of dapagliflozin on albuminuria in DECLARE-TIMI 58[J]. Diabetes Care, 2021, 44(8):1805-1815.
doi: 10.2337/dc21-0076 pmid: 34233928 |
[17] | McMurray J, Docherty KF, Jhund PS. Dapagliflozin in patients with heart failure and reduced ejection fraction.reply[J]. N Engl J Med, 2020, 382(10):973. |
[18] |
Latva-Rasku A, Honka MJ, Kullberg J, et al. The SGLT 2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: A randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients[J]. Diabetes Care, 2019, 42(5):931-937.
doi: 10.2337/dc18-1569 pmid: 30885955 |
[19] |
Nishad R, Mukhi D, Tahaseen SV, et al. Growth hormone induces Notch1 signaling in podocytes and contributes to proteinuria in diabetic nephropathy[J]. J Biol Chem, 2019, 294(44):16109-16122.
doi: 10.1074/jbc.RA119.008966 pmid: 31511328 |
[20] |
Inker LA, Heerspink H, Tighiouart H, et al. Association of treatment effects on early change in urine protein and treatment effects on GFR slope in IgA nephropathy:An individual participant meta-analysis[J]. Am J Kidney Dis, 2021, 78(3):340-349.
doi: 10.1053/j.ajkd.2021.03.007 URL |
[21] |
Kidney Disease: Improving Global Outcomes KDIGO Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases[J]. Kidney Int, 2021, 100(4S):S1-S276.
doi: 10.1016/j.kint.2021.05.021 pmid: 34556256 |
[22] |
Cherney D, Zinman B, Inzucchi SE, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: An exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2017, 5(8):610-621.
doi: 10.1016/S2213-8587(17)30182-1 URL |
[23] |
Barratt J, Floege J. SGLT-2 inhibition in IgA nephropathy: The new standard of care?[J]. Kidney Int, 2021, 100(1):24-26.
doi: 10.1016/j.kint.2021.04.002 URL |
[24] |
丁丽娜, 吴丽华, 周晓玲, 等. IgA肾病患者血清氧化应激相关指标水平与肾间质纤维化的相关性[J]. 中华肾脏病杂志, 2019, 35(5):336-341.
doi: 10.3760/cma.j.issn.1001-7097.2019.05.003 |
[25] | 毕志军. IgA肾病患者与转化生长因子β1相关性研究[J]. 中国药物与临床, 2019, 19(1):36-38. |
[26] |
Kanwar YS, Sun L, Xie P, et al. A glimpse of various pathogenetic mechanisms of diabetic nephropathy[J]. Annu Rev Pathol, 2011, 6:395-423.
doi: 10.1146/annurev.pathol.4.110807.092150 pmid: 21261520 |
[27] |
Ojima A, Matsui T, Nishino Y, et al. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor Axis[J]. Horm Metab Res, 2015, 47(9):686-692.
doi: 10.1055/s-0034-1395609 pmid: 25611208 |
[28] |
Dekkers C, Petrykiv S, Laverman GD, et al. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers[J]. Diabetes Obes Metab, 2018, 20(8):1988-1993.
doi: 10.1111/dom.13301 pmid: 29573529 |
[29] |
Ishibashi Y, Matsui T, Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation[J]. Horm Metab Res, 2016, 48(3):191-195.
doi: 10.1055/s-0035-1555791 pmid: 26158396 |
[30] |
Ni L, Yuan C, Chen G, et al. SGLT2i: Beyond the glucose-lowering effect[J]. Cardiovasc Diabetol, 2020, 19(1):98.
doi: 10.1186/s12933-020-01071-y pmid: 32590982 |
[31] | 邱强, 陈香美, 谢院生, 等. 影响IgA肾病高尿酸血症的因素[J]. 中国中西医结合肾病杂志, 2005, 6(6):329-331. |
[32] | 李玉凤, 董云萍, 蒋红樱, 等. IgA肾病患者高尿酸血症的影响因素分析[J]. 临床肾脏病杂志, 2021, 21(5):411-415. |
[33] |
Wu C, Wang AY, Li G, et al. Association of high body mass index with development of interstitial fibrosis in patients with IgA nephropathy[J]. BMC Nephrol, 2018, 19(1):381.
doi: 10.1186/s12882-018-1164-2 pmid: 30594167 |
[34] |
Fishman B, Shlomai G, Twig G, et al. Renal glucosuria is associated with lower body weight and lower rates of elevated systolic blood pressure: Results of a nationwide cross-sectional study of 2.5 million adolescents[J]. Cardiovasc Diabetol, 2019, 18(1):124.
doi: 10.1186/s12933-019-0929-7 pmid: 31554505 |
[35] | 刘会芳, 王晓辉, 鲁娟, 等. 高尿酸血症对IgA肾病临床及病理特点影响的探讨[J]. 中国中西医结合肾病杂志, 2020, 21(1):47-49. |
[36] |
Becker MA, Schumacher HR, Espinoza LR, et al. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: The CONFIRMS trial[J]. Arthritis Res Ther, 2010, 12(2):R63.
doi: 10.1186/ar2978 URL |
[37] |
McGill JB. The SGLT2 inhibitor empagliflozin for the treatment of type 2 diabetes mellitus: A bench to bedside review[J]. Diabetes Ther, 2014, 5(1):43-63.
doi: 10.1007/s13300-014-0063-1 pmid: 24729157 |
[38] |
Wheeler DC, Toto RD, Stefánsson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy[J]. Kidney Int, 2021, 100(1):215-224.
doi: 10.1016/j.kint.2021.03.033 pmid: 33878338 |
[39] | 侯凡凡. SGLT2抑制剂对慢性肾脏病患者的作用[J]. 中华医学信息导报, 2021, 36(5):19. |
[40] | Authors N. UK Kidney Association Clinical Practice Guideline:Sodium-glucose co-transporter-2 (SGLT-2) inhibition in adults with kidney disease[J]. Pochki, 2022, 11(1):30-36. |
[1] | Wang Tao, Gao Yuwei, Wang Xinghua, Hu Xiuhong, Cui Hongrui, Xu Baozhen, Yang Hongjuan. Correlation of anti-phospholipase A2 receptor antibody with idiopathic membranous nephropathy [J]. Clinical Focus, 2023, 38(7): 606-612. |
[2] | Gao Qinyu, Bao Beiyan, Jin Yan, Zhao Yu. Analysis of clinical features and prognostic factors of IgA nephropathy complicated with depression [J]. Clinical Focus, 2023, 38(6): 510-515. |
[3] | Gao Pengli, Chen Lili, Tian Fen, Zhang Jiaqian, Chen Yipeng, Qi Xiaojing, Xing Guangqun. Impact of body mass index in the clinicopathology and prognosis of patients with IgA nephropathy [J]. Clinical Focus, 2022, 37(3): 234-242. |
[4] | . [J]. Clinical Focus, 2021, 36(6): 569-573. |
[5] | Liu Jiali, Xie Rong, Li Xuelian, Liu Xiaohui. Correlation analysis between neutrophil/lymphocyte ratio with Lee’s grading and Oxford classification of IgA nephropathy [J]. Clinical Focus, 2021, 36(5): 432-435. |
[6] | . [J]. CLINICAL FOCUS, 2013, 28(3): 342-347. |
[7] | . [J]. Clinical Focus, 2012, 27(17): 1540-1542. |
[8] | GE Xiao;WANG Yan-li;YANG Li-ya;CHEN Jun-feng;LIU Bi-chen. Cyclosporine A treatment for idiopathic membranous nephropathy: a systematic review and Meta-analysis [J]. Clinical Focus, 2012, 27(3): 196-201. |
[9] | . [J]. CLINICAL FOCUS, 2010, 25(23): 2100-0. |
[10] | . [J]. CLINICAL FOCUS, 2010, 25(18): 1645-1646. |
[11] | . [J]. CLINICAL FOCUS, 2009, 24(24): 2161-2162. |
[12] | . [J]. CLINICAL FOCUS, 2009, 24(21): 1932-1932. |
[13] | . [J]. CLINICAL FOCUS, 2007, 22(21): 1594-0. |
[14] | FU Shu-xia;XING Ling-ling;PEI Hua-ying;Li Shao-mei;YANG Lin;WANG Yan. Influencing factors of glucocorticoid-induced insulin resistance and clinic [J]. CLINICAL FOCUS, 2007, 22(16): 1144-1147. |
[15] | . [J]. CLINICAL FOCUS, 2006, 21(14): 1034-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||