Clinical Focus ›› 2023, Vol. 38 ›› Issue (8): 743-748.doi: 10.3969/j.issn.1004-583X.2023.08.012
Previous Articles Next Articles
Received:
2023-03-13
Online:
2023-08-20
Published:
2023-09-28
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.08.012
[1] | Zhang B, Jiang H, Dong Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases[J]. Genes Dis, 2020, 8(6): 746-758. |
[2] |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.
doi: 10.1038/nature11112 |
[3] |
Frye M, Harada BT, Behm M, et al. RNA modifications modulate gene expression during development[J]. Science, 2018, 361(6409): 1346-1349.
doi: 10.1126/science.aau1646 pmid: 30262497 |
[4] |
Kumari R, Ranjan P, Suleiman ZG, et al. mRNA modifications in cardiovascular biology and disease: With a focus on m6A modification[J]. Cardiovasc Res, 2022, 118(7): 1680-1692.
doi: 10.1093/cvr/cvab160 URL |
[5] |
Zhang L, Hou C, Chen C, et al. The role of N 6-methyladenosine (m6A) modification in the regulation of circRNAs[J]. Mol Cancer, 2020, 19: 1-11.
doi: 10.1186/s12943-019-1085-0 |
[6] |
Zeng C, Huang W, Li Y, et al. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting[J]. J Hematol Oncol, 2020, 13(1): 1-15.
doi: 10.1186/s13045-019-0838-y |
[7] |
Zhao W, Qi X, Liu L, et al. Epigenetic regulation of m6A modifications in human cancer[J]. Mol Ther Nucleic Acids, 2020, 19: 405-412.
doi: 10.1016/j.omtn.2019.11.022 URL |
[8] | Chien CS, Li JY, Chien Y, et al. METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium[J]. Proc Natl Acad Sci U S A, 2021, 118(7): e2025070118. |
[9] |
Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention[J]. Cell, 2017, 169(5): 824-835.
doi: S0092-8674(17)30530-5 pmid: 28525753 |
[10] |
Yue Y, Liu J, Cui X, et al. VIRMA mediates preferential m6A mRNA methylation in 3'UTR and near stop codon and associates with alternative polyadenylation[J]. Cell Discov, 2018, 4: 10.
doi: 10.1038/s41421-018-0019-0 |
[11] |
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 74.
doi: 10.1038/s41392-020-00450-x |
[12] |
Wang T, Kong S, Tao M, et al. The potential role of RNA N6-methyladenosine in Cancer progression[J]. Mol Cancer, 2020, 19(1): 1-18.
doi: 10.1186/s12943-019-1085-0 |
[13] |
Shen D, Wang B, Gao Y, et al. Detailed resume of RNA m6A demethylases[J]. Acta Pharm Sin B, 2022, 12(5): 2193-2205.
doi: 10.1016/j.apsb.2022.01.003 URL |
[14] |
Wei J, Liu F, Lu Z, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm[J]. Mol Cell, 2018, 71(6): 973-985.
doi: 10.1016/j.molcel.2018.08.011 URL |
[15] | Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation[J]. Nat Rev Mol Cell Biol, 2019, 20(10): 608-624. |
[16] |
Zhang X, Wei LH, Wang Y, et al. Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 2919-2924.
doi: 10.1073/pnas.1820574116 URL |
[17] |
Yu F, Zhu AC, Liu S, et al. RBM33 is a unique m6A RNA-binding protein that regulates ALKBH5 demethylase activity and substrate selectivity[J]. Mol Cell, 2023, 83(12):2003-2019.
doi: 10.1016/j.molcel.2023.05.010 URL |
[18] | Deng X, Qing Y, Horne D, et al. The roles and implications of RNA m6A modification in cancer[J]. Nat Rev Clin Oncol, 2023: 1-20. |
[19] |
Zhou B, Liu C, Xu L, et al. N6‐Methyladenosine reader protein YT521‐B homology domain‐containing 2 suppresses liver steatosis by regulation of mRNA stability of lipogenic genes[J]. Hepatology, 2021, 73(1): 91-103.
doi: 10.1002/hep.31220 URL |
[20] |
Zeng M, Dai X, Liang Z, et al. Critical roles of mRNA m6A modification and YTHDC2 expression for meiotic initiation and progression in female germ cells[J]. Gene, 2020, 753: 144810.
doi: 10.1016/j.gene.2020.144810 URL |
[21] |
Gao S, Sun H, Chen K, et al. Depletion of m6A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin[J]. J Cell Mol Med, 2021, 25(23): 10879-10891.
doi: 10.1111/jcmm.v25.23 URL |
[22] |
Liu N, Zhou K I, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45(10): 6051-6063.
doi: 10.1093/nar/gkx141 pmid: 28334903 |
[23] |
Huang H, Weng H, Sun W, et al. Recognition of RNA N 6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295.
doi: 10.1038/s41556-018-0045-z |
[24] |
Wu R, Li A, Sun B, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination[J]. Cell Res, 2019, 29(1): 23-41.
doi: 10.1038/s41422-018-0113-8 |
[25] | Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics—2020 update: A report from the American heart association[J]. Circulation, 2020, 141(9): e139-e596. |
[26] |
Fu J, Cui X, Zhang X, et al. The role of m6A ribonucleic acid modification in the occurrence of atherosclerosis[J]. Front Genet, 2021, 12: 733871.
doi: 10.3389/fgene.2021.733871 URL |
[27] | 尹亮, 刘德敏, 谷国强. 长链非编码RNA与冠心病相关性研究进展[J]. 临床荟萃, 2021, 36(5):462-466. |
[28] |
Brown RA, Shantsila E, Varma C, et al. Current understanding of atherogenesis[J]. Am J Med, 2017, 130(3): 268-282.
doi: S0002-9343(16)31196-2 pmid: 27888053 |
[29] | Khatana C, Saini NK, Chakrabarti S, et al. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis[J]. Oxid Med Cell Longev, 2020, 2020: 5245308. |
[30] |
Dong G, Yu J, Shan G, et al. N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1[J]. Front Cell Dev Biol, 2021, 9: 731810.
doi: 10.3389/fcell.2021.731810 URL |
[31] |
Wang T, Sun X, Cui H, et al. The peptide compound urantide regulates collagen metabolism in atherosclerotic rat hearts and inhibits the JAK2/STAT3 pathway[J]. Mol Med Rep, 2020, 21(3): 1097-1106.
doi: 10.3892/mmr.2020.10934 pmid: 32016456 |
[32] |
He M, Martin M, Marin T, et al. Endothelial mechanobiology[J]. APL bioeng, 2020, 4(1): 010904.
doi: 10.1063/1.5129563 URL |
[33] | 尹惠阳, 蔺雪峰, 韩轩茂. 蛋白激酶B通路、乙酰肝素酶、NADPH氧化酶在心肌缺血再灌注损伤中的作用及相互关系的研究进展[J]. 临床荟萃, 2022, 37(5):459-462. |
[34] |
Li Y, Ren S, Xia J, et al. EIF4A3-induced circ-BNIP3 aggravated hypoxia-induced injury of H9c2 cells by targeting miR-27a-3p/BNIP3[J]. Mol Ther Nucleic Acids, 2020, 19: 533-545.
doi: 10.1016/j.omtn.2019.11.017 URL |
[35] |
Ke WL, Huang ZW, Peng CL, et al. M6a demethylase fto regulates the apoptosis and inflammation of cardiomyocytes via yap1 in ischemia-reperfusion injury[J]. Bioengineered, 2022, 13(3): 5443-5452.
doi: 10.1080/21655979.2022.2030572 URL |
[36] | Zhu H, Zhou H. Novel insight into the role of endoplasmic reticulum stress in the pathogenesis of myocardial ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021, 2021:5529810. |
[37] | Freundt JK, Frommeyer G, Wötzel F, et al. The transcription factor ATF4 promotes expression of cell stress genes and cardiomyocyte death in a cellular model of atrial fibrillation[J]. Biomed Res Int, 2018, 2018:3694362. |
[38] | Wang J, Zhang J, Ma Y, et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m6A modification of ATF4 mRNA[J]. Aging (Albany NY), 2021, 13(8): 11135-11149. |
[39] |
Zhang QJ, He Y, Li Y, et al. Matricellular protein Cilp1 promotes myocardial fibrosis in response to myocardial infarction[J]. Circ Res, 2021, 129(11): 1021-1035.
doi: 10.1161/CIRCRESAHA.121.319482 URL |
[40] |
Li XX, Mu B, Li X, et al. circCELF1 Inhibits Myocardial Fibrosis by Regulating the Expression of DKK2 Through FTO/m6A and miR-636[J]. J Cardiovasc Transl Res, 2022, 15(5): 998-1009.
doi: 10.1007/s12265-022-10209-0 |
[41] | 曹晶晶, 张英杰, 常丽娟. 心房颤动发病机制及相关生物标志物研究进展[J]. 临床荟萃, 2022, 37(10):946-949. |
[42] |
Gao XQ, Zhang YH, Liu F, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6-methyladenosine methylation of Parp10 mRNA[J]. Nat Cell Biol, 2020, 22(11): 1319-1331.
doi: 10.1038/s41556-020-0576-y |
[43] |
Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158.
doi: 10.1038/nature18629 |
[44] | 王文琦, 张涛. 司美格鲁肽对2型糖尿病合并冠心病患者心肌缺血总负荷及血清炎症因子的影响[J]. 临床荟萃, 2022, 37(11):996-1000. |
[45] |
Meng L, Lin H, Huang X, et al. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA[J]. Cell Death Dis, 2022, 13(1): 38.
doi: 10.1038/s41419-021-04484-z pmid: 35013106 |
[46] |
Ju W, Liu K, Ouyang S, et al. Changes in N6-methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy[J]. Front Cell Dev Biol, 2021, 9: 702579.
doi: 10.3389/fcell.2021.702579 URL |
[1] | . [J]. Clinical Focus, 2024, 39(2): 188-192. |
[2] | Huang Yuling, Zhang Xinyue, Rong Pingping, Yang Wenqi, Cao Xinying, Xing Cainai, Wang Zhijun, Liu Ning. Correlation analysis of Non-HDL-C/HDL-C and NHR with the severity of coronary artery disease [J]. Clinical Focus, 2024, 39(2): 115-120. |
[3] | Wang Yihan, Qin Xuyan, Han Xuanze, Wang Yingjie, Gao Feifei, Chen Chunhong, Zhang Lingnan, Zhang Fang. Efficacy and safety of rivaroxaban therapy in elderly patients with non-valvular atrial fibrillation who had a HASBLED score≥3 [J]. Clinical Focus, 2024, 39(2): 121-124. |
[4] | . [J]. Clinical Focus, 2024, 39(2): 168-171. |
[5] | . [J]. Clinical Focus, 2024, 39(1): 75-79. |
[6] | . [J]. Clinical Focus, 2024, 39(1): 80-83. |
[7] | Liu Yi, Cui Kun, Liu Chang, Zhao Haotian, Li Li, Xue Hongyuan. Correlation between serum secreted frizzled-related protein 5 and early renal damage in patients with essential hypertension [J]. Clinical Focus, 2023, 38(12): 1073-1077. |
[8] | Jiang Ji, Zhu Xiaogang, Jiang Shan, Dawa Zhaba, Cen Qiang. Risk factors of proteinuria in hypertensive people living at high altitude for generations [J]. Clinical Focus, 2023, 38(12): 1086-1090. |
[9] | Li Lisha, Shen Xianghui, Liu Yanhui, Ren Yanbin. Aortic root anatomy and atrial septal mobility analyzed by transesophageal echocardiography [J]. Clinical Focus, 2023, 38(11): 1012-1015. |
[10] | Li Zhiyong. Transient peripheral carotid inflammation syndrome diagnosed by ultrasonography: A case report and literature review [J]. Clinical Focus, 2023, 38(11): 1027-1030. |
[11] | Xu Yang, Xue Ling. Influencing factors for mild cognitive impairment in type H hypertension patients combined with type 2 diabetes mellitus [J]. Clinical Focus, 2023, 38(10): 887-892. |
[12] | Zhang Yongzhi, Li Yanmin, Ma Xiaowen, Gu Ping. Aortic dissection with weakness and numbness of both lower limbs as the first manifestation: A case report and literature review [J]. Clinical Focus, 2023, 38(10): 912-916. |
[13] | Wang Jiaqi, Xie Yuetao, Gao Man, Song Xuelian, Zhang Feifei, Dang Yi, Qi Xiaoyong. Treatment of variant angina pectoris guided by the optical coherence tomography: A case report and literature review [J]. Clinical Focus, 2023, 38(10): 917-921. |
[14] | Yang Changlin, Cao Shufeng, Qiao Lian, Zhao Huimin. Type I Kounis syndrome caused by drug allergy: A case report [J]. Clinical Focus, 2023, 38(10): 922-925. |
[15] | Duan Fang, Cui Wei. Application principles of vasodilators in the treatment of acute heart failure [J]. Clinical Focus, 2023, 38(9): 773-778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||