Clinical Focus ›› 2023, Vol. 38 ›› Issue (10): 954-960.doi: 10.3969/j.issn.1004-583X.2023.10.018
Received:
2023-01-25
Online:
2023-10-20
Published:
2024-01-03
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.10.018
[1] | Cancer Stat Facts: Leukemia-acute myeloid leukemia (AML)[EB/OL] https://seer.cancer.gov/statfacts/html/amyl.html. 2022-05-18/2023-01-25. |
[2] |
Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet[J]. Blood, 2010, 115(3): 453-474.
doi: 10.1182/blood-2009-07-235358 pmid: 19880497 |
[3] |
Kantarjian H, O'Brien S. Questions regarding frontline therapy of acute myeloid leukemia[J]. Cancer, 2010, 116(21): 4896-4901.
doi: 10.1002/cncr.25281 pmid: 20623787 |
[4] |
Mayer LD, Harasym TO, Tardi PG, et al. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice[J]. Mol cancer ther, 2006, 5(7): 1854-1863.
doi: 10.1158/1535-7163.MCT-06-0118 pmid: 16891472 |
[5] |
Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia[J]. J Clin Oncol, 2018, 36(26): 2684.
doi: 10.1200/JCO.2017.77.6112 pmid: 30024784 |
[6] |
Lancet JE, Uy GL, Newell LF, et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Haematol, 2021, 8(7): e481-e491.
doi: 10.1016/S2352-3026(21)00134-4 pmid: 34171279 |
[7] |
Lin TL, Rizzieri DA, Ryan DH, et al. Older adults with newly diagnosed high-risk/secondary AML who achieved remission with CPX-351: Phase 3 post hoc analyses[J]. Blood Adv, 2021, 5(6): 1719-1728.
doi: 10.1182/bloodadvances.2020003510 pmid: 33724305 |
[8] |
Chiche E, Rahmé R, Bertoli S, et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort[J]. Blood Adv, 2021, 5(1):176-184.
doi: 10.1182/bloodadvances.2020003159 pmid: 33570629 |
[9] |
Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia[J]. J Clin Oncol, 2012, 30(21): 2670.
doi: 10.1200/JCO.2011.38.9429 pmid: 22689805 |
[10] |
Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with> 30% blasts[J]. Blood, 2015, 126(3): 291-299.
doi: 10.1182/blood-2015-01-621664 pmid: 25987659 |
[11] | 高苏, 仇惠英, 金正明, 等. 地西他滨单药及联合半程和全程CAG方案治疗骨髓增生异常综合征和急性髓系白血病疗效观察[J]. 中华血液学杂志, 2014, 35(11): 961-965. |
[12] | 蔡艳青. 地西他滨联合CAG方案治疗老年急性髓系白血病临床疗效观察[J]. 山东医药, 2016, 56(5):90-91. |
[13] |
Welch JS, Petti AA, Miller CA, et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes[J]. N Engl J Med, 2016, 375(21): 2023-2036.
doi: 10.1056/NEJMoa1605949 URL |
[14] | Lübbert M, Grishina O, Schmoor C, et al. Valproate and retinoic acid in combination with decitabine in elderly nonfit patients with acute myeloid leukemia: Results of a multicenter, randomized, 2× 2, phase II trial[J]. J Clin Oncol, 2020, 38(3): 257-270. |
[15] |
DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia[J]. Blood, 2019, 133(1): 7-17.
doi: 10.1182/blood-2018-08-868752 pmid: 30361262 |
[16] | 阮敏, 龙章彪, 黄震琪, 等. 维奈克拉联合阿扎胞苷与地西他滨联合DAG/IAG方案治疗新诊断急性髓系白血病的效果比较[J]. 中国临床保健杂志, 2022, 25(3):388-392. |
[17] | 王鹏, 张露巍, 陆棽琦, 等. 维奈克拉联合阿扎胞苷与地西他滨联合预激方案治疗老年复发急性髓系白血病的疗效及安全性比较的初步观察[J]. 中华内科杂志, 2022, 61(2):157-163. |
[18] | 娄典, 刘利, 秦炜炜. 维奈克拉联合阿扎胞苷治疗老年初治急性髓系白血病的临床分析[J]. 中国肿瘤临床, 2022, 49(15):775-780. |
[19] |
Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and biological correlates of response in a phase ii study of venetoclax monotherapy in patients with acute myelogenous leukemiavenetoclax in treatment of acute myelogenous leukemia[J]. Cancer Discov, 2016, 6(10): 1106-1117.
pmid: 27520294 |
[20] |
DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia[J]. New Engl J Med, 2020, 383(7): 617-629.
doi: 10.1056/NEJMoa2012971 URL |
[21] |
Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial[J]. Blood, 2020, 135(24): 2137-2145.
doi: 10.1182/blood.2020004856 pmid: 32219442 |
[22] |
Kernytsky A, Wang F, Hansen E, et al. IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition[J]. Blood, 2015, 125(2): 296-303.
doi: 10.1182/blood-2013-10-533604 pmid: 25398940 |
[23] |
Issa GC, DiNardo CD. Acute myeloid leukemia with IDH1 and IDH2 mutations: 2021 treatment algorithm[J]. Blood Cancer J, 2021, 11(6): 107.
doi: 10.1038/s41408-021-00497-1 pmid: 34083508 |
[24] |
Roboz GJ, DiNardo CD, Stein EM, et al. Ivosidenib induces deep durable remissions in patients with newly diagnosed IDH1-mutant acute myeloid leukemia[J]. Blood, 2020, 135(7): 463-471.
doi: 10.1182/blood.2019002140 pmid: 31841594 |
[25] |
DiNardo CD, Stein AS, Stein EM, et al. Mutant isocitrate dehydrogenase 1 inhibitor ivosidenib in combination with azacitidine for newly diagnosed acute myeloid leukemia[J]. J Clin Oncol, 2021, 39(1): 57.
doi: 10.1200/JCO.20.01632 pmid: 33119479 |
[26] |
Stein EM, DiNardo CD, Fathi AT, et al. Ivosidenib or enasidenib combined with intensive chemotherapy in patients with newly diagnosed AML: A phase 1 study[J]. Blood, 2021, 137(13): 1792-1803.
doi: 10.1182/blood.2020007233 pmid: 33024987 |
[27] |
Pollyea DA, Tallman MS, de Botton S, et al. Enasidenib, an inhibitor of mutant IDH2 proteins, induces durable remissions in older patients with newly diagnosed acute myeloid leukemia[J]. Leukemia, 2019, 33(11): 2575-2584.
doi: 10.1038/s41375-019-0472-2 pmid: 30967620 |
[28] |
DiNardo CD, Schuh AC, Stein EM, et al. Enasidenib plus azacitidine versus azacitidine alone in patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia (AG221-AML-005): a single-arm, phase 1b and randomised, phase 2 trial[J]. Lancet Oncol, 2021, 22(11): 1597-1608.
doi: 10.1016/S1470-2045(21)00494-0 pmid: 34672961 |
[29] |
Stengel A, Kern W, Haferlach T, et al. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: An analysis of 3307 cases[J]. Leukemia, 2017, 31(3): 705-711.
doi: 10.1038/leu.2016.263 pmid: 27680515 |
[30] |
Cluzeau T, Sebert M, Rahmé R, et al. Eprenetapopt plus azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia: A phase II study by the Groupe Francophone des Myélodysplasies (GFM)[J]. J Clin Oncol, 2021, 39(14): 1575.
doi: 10.1200/JCO.20.02342 pmid: 33600210 |
[31] |
Sallman DA, DeZern AE, Garcia-Manero G, et al.Eprenetapopt(APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes[J]. J Clinl Oncol, 2021, 39(14): 1584.
doi: 10.1200/JCO.20.02341 URL |
[32] |
Garcia-Manero G, Goldberg AD, Winer ES, et al. Phase I and expansion study of eprenetapopt (APR-246) in combination with venetoclax (VEN) and azacitidine (AZA) in TP53-mutant acute myeloid leukemia (AML)[J]. Blood, 2021, 138: 3409.
doi: 10.1182/blood-2021-148940 URL |
[33] |
Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm[J]. Blood Cancer J, 2021, 11(5): 104.
doi: 10.1038/s41408-021-00495-3 pmid: 34045454 |
[34] | Capelli D, Menotti D, Fiorentini A, et al. Overcoming resistance: FLT3 inhibitors past, present, future and the challenge of cure[J]. Cancer, 2022, 14(17): 4315. |
[35] | Grafone T, Palmisano M, Nicci C, et al. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment[J]. Oncol Rev, 2012, 6(1):e8. |
[36] |
Alfayez M, Kantarjian HM, Ravandi F, et al. Outcomes with subsequent FLT3-inhibitor (FLT3i) based therapies in FLT3-mutated (mu) patients (pts) refractory/relapsed (R/R) to one or more prior FLT3 inhibitor based therapies: A single center experience[J]. Blood, 2018, 132: 663.
doi: 10.1182/blood-2018-99-117870 URL |
[37] |
Borthakur G, Kantarjian H, Ravandi F, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias[J]. Haematologica, 2011, 96(1): 62.
doi: 10.3324/haematol.2010.030452 pmid: 20952518 |
[38] |
Uy GL, Mandrekar SJ, Laumann K, et al. A phase 2 study incorporating sorafenib into the chemotherapy for older adults with FLT3-mutated acute myeloid leukemia: CALGB 11001[J]. Blood Adv, 2017, 1(5): 331-340.
doi: 10.1182/bloodadvances.2016003053 URL |
[39] |
Ohanian M, Garcia-Manero G, Levis M, et al. Sorafenib combined with 5-azacytidine in older patients with untreated FLT3-ITD mutated acute myeloid leukemia[J]. Am J Hematol, 2018, 93(9): 1136-1141.
doi: 10.1002/ajh.25198 pmid: 30028037 |
[40] |
Dennis M, Thomas IF, Ariti C, et al. Randomized evaluation of quizartinib and low-dose ara-C vs low-dose ara-C in older acute myeloid leukemia patients[J]. Blood Adv, 2021, 5(24): 5621-5625.
doi: 10.1182/bloodadvances.2021005038 pmid: 34597366 |
[41] |
Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): A multicentre, randomised, controlled, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7): 984-997.
doi: S1470-2045(19)30150-0 pmid: 31175001 |
[42] | Smith CC. The growing landscape of FLT3 inhibition in AML[J]. Hematology Am Soc Hematology Educ Program, 2019, 2019(1): 539-547. |
[43] |
Esteve J, Schots R, Del Castillo TB, et al. Multicenter, open-label, 3-arm study of gilteritinib, gilteritinib plus azacitidine, or azacitidine alone in newly diagnosed FLT3 mutated (FLT3mut+) acute myeloid leukemia (AML) patients ineligible for intensive induction chemotherapy: Findings from the safety cohort[J]. Blood, 2018, 132: 2736.
doi: 10.1182/blood-2018-99-110976 URL |
[44] | Döhner H, Weber D, Krzykalla J, et al. Midostaurin plus intensive chemotherapy for younger and older patients with AML and FLT3 internal tandem duplications[J]. Blood Adva, 2022, 6(18): 5345-5355. |
[45] |
Schlenk RF, Döhner K, Kneba M, et al. Gene mutations and response to treatment with all-trans retinoic acid in elderly patients with acute myeloid leukemia. Results from the AMLSG Trial AML HD98B[J]. Haematologica, 2009, 94(1): 54.
doi: 10.3324/haematol.13378 pmid: 19059939 |
[46] |
Tassara M, Döhner K, Brossart P, et al. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients[J]. Blood, 2014, 123(26): 4027-4036.
doi: 10.1182/blood-2013-12-546283 pmid: 24797300 |
[47] |
Schlenk RF, Luebbert M, Benner A, et al. All-trans retinoic acid as adjunct to intensive treatment in younger adult patients with acute myeloid leukemia: Results of the randomized AMLSG 07-04 study[J]. Ann Hematol, 2016, 95: 1931-1942.
pmid: 27696203 |
[48] |
Schlenk RF, Benner A, Hartmann F, et al. Risk-adapted postremission therapy in acute myeloid leukemia: Results of the German multicenter AML HD93 treatment trial[J]. Leukemia, 2003, 17(8): 1521-1528.
pmid: 12886238 |
[49] |
Schlenk RF, Dohner K, Mack S, et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German-Austrian trial AMLHD98A[J]. J Clin Oncol, 2010, 28(30): 4642-4648.
doi: 10.1200/JCO.2010.28.6856 pmid: 20805454 |
[50] |
Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev, 2001, 15(23): 3059-3087.
doi: 10.1101/gad.938601 URL |
[51] |
Jeng KS, Sheen IS, Leu CM, et al. The role of smoothened in cancer[J]. Int J Mol Sci, 2020, 21(18): 6863.
doi: 10.3390/ijms21186863 URL |
[52] |
Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome[J]. Leukemia, 2019, 33(2): 379-389.
doi: 10.1038/s41375-018-0312-9 pmid: 30555165 |
[53] |
Cortes JE, Heidel FH, Fiedler W, et al. Survival outcomes and clinical benefit in patients with acute myeloid leukemia treated with glasdegib and low-dose cytarabine according to response to therapy[J]. J Hematol Oncol, 2020, 13(1): 1-12.
doi: 10.1186/s13045-019-0838-y |
[54] |
Cortes JE, Douglas Smith B, Wang ES, et al. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: Phase 2 study results[J]. Am J Hematol, 2018, 93(11): 1301-1310.
doi: 10.1002/ajh.25238 pmid: 30074259 |
[55] |
Walter RB, Appelbaum FR, Estey EH, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy[J]. Blood, 2012, 119(26): 6198-6208.
doi: 10.1182/blood-2011-11-325050 pmid: 22286199 |
[56] |
Sievers EL, Larson RA, Stadtmauer EA, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse[J]. J Clin Oncol, 2001, 19(13):3244-3254.
doi: 10.1200/JCO.2001.19.13.3244 pmid: 11432892 |
[57] |
Amadori S, Suciu S, Selleslag D, et al. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: Results of the randomized phase III EORTC-GIMEMA AML-19 trial[J]. J Clin Oncol, 2016, 34(9):972.
doi: 10.1200/JCO.2015.64.0060 pmid: 26811524 |
[58] |
Tsai RK, Discher DE. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells[J]. J Cell Biol, 2008, 180(5): 989-1003.
doi: 10.1083/jcb.200708043 URL |
[59] | Liu J, Wang L, Zhao F, et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential[J]. PLoS One, 2015, 10(9): e0137345. |
[60] | Feng D, Gip P, McKenna KM, et al. Combination treatment with 5F9 and azacitidine enhances phagocytic elimination of acute myeloid leukemia[J]. Blood(Supplement 1), 2018, 132: 2729. |
[61] | Boasman K, Bridle C, Simmonds MJ, et al. Role of pro-phagocytic calreticulin and anti-phagocytic CD47 in MDS and MPN models treated with azacytidine or ruxolitinib[C]. Italy: Ferrata Storti Foundation, 2017. |
[62] |
Sallman DA, Asch AS, Al Malki MM, et al. The first-in-class anti-CD47 antibody magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: Ongoing phase 1b results[J]. Blood, 2019, 134(Supplement_1): 569.
doi: 10.1182/blood-2019-126271 URL |
[63] |
Daver N, Konopleva M, Maiti A, et al. Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML[J]. Blood, 2021, 138: 371.
doi: 10.1182/blood-2021-153638 URL |
[64] |
Leith CP, Kopecky KJ, Chen IM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: A Southwest Oncology Group Study[J]. Blood, 1999, 94(3): 1086-1099.
pmid: 10419902 |
[65] |
Oran B, Weisdorf DJ. Survival for older patients with acute myeloid leukemia: A population-based study[J]. Haematologica, 2012, 97(12): 1916.
doi: 10.3324/haematol.2012.066100 pmid: 22773600 |
[66] | Koh Y, Kim I, Bae JY, et al. Prognosis of secondary acute myeloid leukemia is affected by the type of the preceding hematologic disorders and the presence of trisomy 8[J]. Jpa J Clin Oncol, 2010, 40(11): 1037-1045. |
[67] | Barbullushi K, Cavallaro F, Serpenti F, et al. Feasibility of myeloablative ALLO-SCT from haploidentical donor in AML patients older than 70 years: A single-centre experience[C]. London, Springernature, 2022. |
[68] | Deeg HJ, Steuten LM. Therapy for hematologic cancers in older patients, quality of life, and health economics: difficult decisions[J]. JAMA, 2015, 1(5): 571-572. |
[69] | 郭梅, 艾辉胜. 微移植治疗急性髓系白血病研究现状和展望[J]. 临床血液学杂志, 2022, 35(5):312-317. |
[70] |
Guo M, Chao NJ, Li JY, et al. HLA-mismatched microtransplant in older patients newly diagnosed with acute myeloid leukemia: Results from the microtransplantation interest group[J]. JAMA Oncol, 2018, 4(1): 54-62.
doi: 10.1001/jamaoncol.2017.2656 pmid: 28910431 |
[71] |
Hiwarkar P, Qasim W, Ricciardelli I, et al. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells[J]. Blood, 2015, 126(26): 2882-2891.
doi: 10.1182/blood-2015-06-654780 pmid: 26450984 |
[72] |
Rocha V. Umbilical cord blood cells from unrelated donor as an alternative source of hematopoietic stem cells for transplantation in children and adults[J]. Semin Hematol, 2016, 53(4): 237-245.
doi: S0037-1963(16)30090-7 pmid: 27788761 |
[73] |
Li X, Dong Y, Li Y, et al. Low-dose decitabine priming with intermediate-dose cytarabine followed by umbilical cord blood infusion as consolidation therapy for elderly patients with acute myeloid leukemia: A phase II single-arm study[J]. BMC Cancer, 2019, 19(1): 1-8.
doi: 10.1186/s12885-018-5219-3 |
[1] | Yin Lingling, Wu Wenjian, Zhu Feng. Lineage switch from acute myeloid leukemia to acute lymphoblastic leukemia: A case report and literature review [J]. Clinical Focus, 2022, 37(11): 1025-1030. |
[2] | Liu Qiaoxue, Wei Hui. Standardized treatment of acute myeloid leukemia [J]. Clinical Focus, 2021, 36(10): 880-883. |
[3] | Qin Yazhen. Standardized detection of BCR-ABL mRNA and clinical application in patients with chronic myeloid leukemia [J]. Clinical Focus, 2021, 36(10): 884-888. |
[4] | Wang Hui, Chen Man. Flow cytometry in minimal residual disease detection of acute myeloid leukemia: current status and progress [J]. Clinical Focus, 2021, 36(10): 889-895. |
[5] | . @@ [J]. Clinical Focus, 2015, 30(8): 951-955. |
[6] | GUO Xiao-ling. Updates in treatment of relapsed and refractory acute myeloid leukemia [J]. Clinical Focus, 2014, 29(10): 1108-1113. |
[7] | LI Zhen;FANG Bai-jun. Advances in treatment of chronic myelogenous leukemia [J]. Clinical Focus, 2014, 29(10): 1126-1.12911e+007. |
[8] | . [J]. Clinical Focus, 2014, 29(6): 704-706. |
[9] | REN Jin-hai;GUO Xiao-nan;LIN Feng-ru. Update on chronic myelogenous leukemia and other chronic myeloproliferative neoplasms in 2013 [J]. CLINICAL FOCUS, 2014, 29(3): 270-274. |
[10] | . [J]. Clinical Focus, 2013, 28(4): 390-0. |
[11] | LI Liang-liang;CHAI Ye;ZHANG Lian-sheng;ZENG Peng-yun;WU Chong-yang;YI Liang-cai;CHEN Hong-ying;BAI Jun. Tumor necrosis factor-α influences level of dendritic cell-chemokine 1 expressed by chronic myeloid leukemia-derived dendritic cells [J]. Clinical Focus, 2011, 26(15): 1299-0. |
[12] | . [J]. CLINICAL FOCUS, 2010, 25(21): 1926-1926. |
[13] | HAO Ji-hong;HU Rui;YANG Hong-le;ZHU Yun;LIU Xiao. WHO classification in clinical diagnosis of acute erythroleukemia [J]. CLINICAL FOCUS, 2010, 25(12): 1049-1051. |
[14] | LIU Yan-ping;HE Lu-jun;WEI Ying-fei;WANG Zhen-lei;QIAO Shu-kai;XU Shi-rong. Relationship between HLA-A,B,DRB1 gene polymorphism in Hebei Chinese Han and chronic myeloid leukemia [J]. CLINICAL FOCUS, 2009, 24(17): 1485-1488. |
[15] | GAN Si-lin;SUN Hui;MA Jie;CHEN Li. Efficacy and safety evaluation of imatinib in treatment of patients with chronic myeloid leukemia [J]. CLINICAL FOCUS, 2009, 24(6): 490-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||