Clinical Focus ›› 2023, Vol. 38 ›› Issue (6): 554-558.doi: 10.3969/j.issn.1004-583X.2023.06.014
Previous Articles Next Articles
Received:
2022-12-02
Online:
2023-06-20
Published:
2023-08-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.06.014
[1] |
de Matos AM, de Macedo MP, Rauter AP. Bridging type 2 diabetes and Alzheimer's disease: Assembling the puzzle pieces in the quest for the molecules with therapeutic and preventive potential[J]. Med Res Rev, 2018, 38(1): 261-324.
doi: 10.1002/med.21440 pmid: 28422298 |
[2] |
Biessels GJ, Nobili F, Teunissen CE, et al. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective[J]. Lancet Neurol, 2020, 19(8): 699-710.
doi: S1474-4422(20)30139-3 pmid: 32445622 |
[3] |
McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction[J]. Lancet (London, England), 2012, 379(9833): 2291-2299.
doi: 10.1016/S0140-6736(12)60360-2 URL |
[4] |
Zhang Y, Song W. Islet amyloid polypeptide: Another key molecule in Alzheimer's pathogenesis[J]. Prog Neurobiol, 2017, 153: 100-120.
doi: S0301-0082(16)30076-4 pmid: 28274676 |
[5] |
Xue M, Xu W, Ou YN, et al. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies[J]. Ageing Res Rev, 2019, 55: 100944.
doi: 10.1016/j.arr.2019.100944 URL |
[6] |
Ehtewish H, Arredouani A, El-Agnaf O. Diagnostic, prognostic, and mechanistic biomarkers of diabetes mellitus-associated cognitive decline[J]. Int J Mol Sci, 2022, 23(11):6144.
doi: 10.3390/ijms23116144 URL |
[7] |
Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA Research framework: Toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562.
doi: S1552-5260(18)30072-4 pmid: 29653606 |
[8] |
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. Lancet (London, England), 2021, 397(10284): 1577-1590.
doi: 10.1016/S0140-6736(20)32205-4 URL |
[9] |
Srikanth V, Sinclair AJ, Hill-Briggs F, et al. Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities[J]. Lancet Diabetes Endocrinol, 2020, 8(6): 535-545.
doi: 10.1016/S2213-8587(20)30118-2 URL |
[10] | Sperling RA, Jack CR Jr, Aisen PS. Testing the right target and right drug at the right stage[J]. Sci Transl Med, 2011, 3(111): 111-133. |
[11] |
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591-604.
doi: 10.1038/s41574-018-0048-7 pmid: 30022099 |
[12] |
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181.
doi: 10.1038/nrneurol.2017.185 pmid: 29377010 |
[13] |
Tumminia A, Vinciguerra F, Parisi M, et al. Type 2 diabetes mellitus and alzheimer's disease: role of insulin signalling and therapeutic implications[J]. Int J Mol Sci, 2018, 19(11):3306.
doi: 10.3390/ijms19113306 URL |
[14] |
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4): 2133-2223.
doi: 10.1152/physrev.00063.2017 pmid: 30067154 |
[15] |
Chiu SL, Chen CM, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo[J]. Neuron, 2008, 58(5): 708-719.
doi: 10.1016/j.neuron.2008.04.014 URL |
[16] |
Maciejczyk M, Żebrowska E, Chabowski A. Insulin Resistance and Oxidative Stress in the Brain: What's New?[J]. Int J Mol Sci, 20198, 20(4): 874.
doi: 10.3390/ijms20040874 URL |
[17] |
Roden M, Shulman GI. The integrative biology of type 2 diabetes[J]. Nature, 2019, 576(7785): 51-60.
doi: 10.1038/s41586-019-1797-8 |
[18] |
Burillo J, Marqués P, Jiménez B, et al. Insulin resistance and diabetes mellitus in Alzheimer's disease[J]. Cells, 2021, 10(5):1236.
doi: 10.3390/cells10051236 URL |
[19] |
Goldstein BJ. Insulin resistance as the core defect in type 2 diabetes mellitus[J]. Am J Cardiol, 2002, 90(5a): 3G-10G.
doi: 10.1016/s0002-9149(02)02553-5 pmid: 12231073 |
[20] |
Sędzikowska A, Szablewski L. Insulin and insulin resistance in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(18):9987.
doi: 10.3390/ijms22189987 URL |
[21] |
Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction[J]. Clin Chim Acta, 2015, 444: 18-23.
doi: 10.1016/j.cca.2015.01.027 pmid: 25661087 |
[22] |
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ[J]. Mol Metab, 2021, 52: 101234.
doi: 10.1016/j.molmet.2021.101234 URL |
[23] |
Barber TM, Kyrou I, Randeva HS, et al. Mechanisms of insulin resistance at the crossroad of obesity with associated metabolic abnormalities and cognitive dysfunction[J]. Int J Mol Sci, 2021, 22(2):546.
doi: 10.3390/ijms22020546 URL |
[24] | Banks WA, Rhea EM. The blood-brain barrier, oxidative stress, and insulin resistance[J]. Antioxidants (Basel), 2021, 10(11):1695. |
[25] |
Rao YL, Ganaraja B, Murlimanju BV, et al. Hippocampus and its involvement in Alzheimer's disease: A review[J]. 3 Biotech, 2022, 12(2): 55.
doi: 10.1007/s13205-022-03123-4 pmid: 35116217 |
[26] |
Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction[J]. Nat Rev Neurosci, 2015, 16(11): 660-671.
doi: 10.1038/nrn4019 pmid: 26462756 |
[27] |
de la Monte SM, Wands JR. Alzheimer's disease is type 3 diabetes-evidence reviewed[J]. J Diabetes Sci Technol, 2008, 2(6): 1101-1113.
doi: 10.1177/193229680800200619 pmid: 19885299 |
[28] |
Luo A, Xie Z, Wang Y, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: Advances in potential mechanisms and therapies[J]. Neurosci Biobehav Rev, 2022, 137: 104642.
doi: 10.1016/j.neubiorev.2022.104642 URL |
[29] |
Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review[J]. Lancet Neurol, 2006, 5(1): 64-74.
doi: 10.1016/S1474-4422(05)70284-2 pmid: 16361024 |
[30] |
Newcombe EA, Camats-Perna J, Silva ML, et al. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease[J]. J Neuroinflammation, 2018, 15(1): 276.
doi: 10.1186/s12974-018-1313-3 |
[31] |
Farbood Y, Ghaderi S, Rashno M, et al. Sesamin: A promising protective agent against diabetes-associated cognitive decline in rats[J]. Life Sci, 2019, 230: 169-177.
doi: S0024-3205(19)30427-8 pmid: 31150685 |
[32] | Yan LJ. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress[J]. J Diabetes Res, 2014: 137919. |
[33] |
Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier[J]. Front Neurosci, 2018, 12: 930.
doi: 10.3389/fnins.2018.00930 URL |
[34] |
van Sloten TT, Sedaghat S, Carnethon MR, et al. Cerebral microvascular complications of type 2 diabetes: Stroke, cognitive dysfunction, and depression[J]. Lancet Diabetes Endocrinol, 2020, 8(4): 325-336.
doi: 10.1016/S2213-8587(19)30405-X URL |
[35] |
Phoenix A, Chandran R, Ergul A. Cerebral microvascular senescence and inflammation in diabetes[J]. Front Physiol, 2022, 13: 864758.
doi: 10.3389/fphys.2022.864758 URL |
[36] |
Stehouwer CDA. Microvascular dysfunction and hyperglycemia: A vicious cycle with widespread consequences[J]. Diabetes, 2018, 67(9): 1729-1741.
doi: 10.2337/dbi17-0044 pmid: 30135134 |
[37] |
Marseglia A, Fratiglioni L, Kalpouzos G, et al. Prediabetes and diabetes accelerate cognitive decline and predict microvascular lesions: A population-based cohort study[J]. Alzheimers Dement, 2019, 15(1): 25-33.
doi: S1552-5260(18)33249-7 pmid: 30114414 |
[38] |
Barrett EJ, Liu Z, Khamaisi M, et al. Diabetic microvascular disease: An endocrine society scientific statement[J]. J Clin Endocrinol Metab, 2017, 102(12): 4343-4410.
doi: 10.1210/jc.2017-01922 pmid: 29126250 |
[39] |
Jiang Q, Zhang L, Ding G, et al. Impairment of the glymphatic system after diabetes[J]. J Cereb Blood Flow Metab, 2017, 37(4): 1326-1337.
doi: 10.1177/0271678X16654702 URL |
[40] |
Zhang L, Chopp M, Jiang Q, et al. Role of the glymphatic system in ageing and diabetes mellitus impaired cognitive function[J]. Stroke Vasc Neurol, 2019, 4(2): 90-92.
doi: 10.1136/svn-2018-000203 pmid: 31338217 |
[41] |
Yang G, Wei J, Liu P, et al. Role of the gut microbiota in type 2 diabetes and related diseases[J]. Metabolism, 2021, 117: 154712.
doi: 10.1016/j.metabol.2021.154712 URL |
[42] |
Xu Y, Zhou H, Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment[J]. Front Aging Neurosci, 2017, 9: 106.
doi: 10.3389/fnagi.2017.00106 pmid: 28496408 |
[43] |
Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and depression[J]. Trends Neurosci, 2013, 36(5): 305-312.
doi: 10.1016/j.tins.2013.01.005 pmid: 23384445 |
[44] |
Zhou Z, Sun B, Yu D, et al. Gut microbiota: An Important player in type 2 diabetes mellitus[J]. Front Cell Infect Microbiol, 2022, 12: 834485.
doi: 10.3389/fcimb.2022.834485 URL |
[45] |
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature, 2012, 488(7410): 178-184.
doi: 10.1038/nature11319 |
[46] |
Łuc M, Misiak B, Pawłowski M, et al. Gut microbiota in dementia. Critical review of novel findings and their potential application[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2021, 104: 110039.
doi: 10.1016/j.pnpbp.2020.110039 URL |
[47] |
Singhal K, Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis[J]. J Neurosci Res, 2015, 93(2): 296-308.
doi: 10.1002/jnr.23478 pmid: 25267297 |
[48] |
Hirabayashi N, Hata J, Furuta Y, et al. association between diabetes and gray matter atrophy patterns in a general older japanese population: The hisayama study[J]. Diabetes Care, 2022, 45(6): 1364-1371.
doi: 10.2337/dc21-1911 pmid: 35500069 |
[49] |
Li W, Risacher SL, Huang E, et al. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort[J]. Neurology, 2016, 87(6): 595-600.
doi: 10.1212/WNL.0000000000002950 pmid: 27385744 |
[50] |
van Elderen SG, de Roos A, de Craen AJ, et al. Progression of brain atrophy and cognitive decline in diabetes mellitus: A 3-year follow-up[J]. Neurology, 2010, 75(11): 997-1002.
doi: 10.1212/WNL.0b013e3181f25f06 pmid: 20837967 |
[51] |
den Heijer T, Vermeer SE, van Dijk EJ, et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI[J]. Diabetologia, 2003, 46(12): 1604-1610.
doi: 10.1007/s00125-003-1235-0 pmid: 14595538 |
[52] |
Hayashi K, Kurioka S, Yamaguchi T, et al. Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese people with type 2 diabetes[J]. Diabetes Res Clin Pract, 2011, 94(2): 180-185.
doi: 10.1016/j.diabres.2011.07.002 URL |
[1] | . [J]. Clinical Focus, 2024, 39(2): 172-176. |
[2] | Xiao Huangyi, Yuan Jiankun, Yan Ziyu, Zeng Wenshu, Lu Lanmo, Wang Jun. Effectiveness of cognitive interventions on elderly patients with amnestic mild cognitive impairment: A meta-analysis [J]. Clinical Focus, 2024, 39(1): 12-19. |
[3] | . [J]. Clinical Focus, 2023, 38(11): 1031-1033. |
[4] | Xiao Wangjing, Li Xinmeng, Lu Songling, Sun Xuehua. Efficacy and safety of repetitive transcranial magnetic stimulation treatment on central neurogenic dysphagia: A meta-analysis [J]. Clinical Focus, 2023, 38(7): 588-599. |
[5] | . [J]. Clinical Focus, 2023, 38(5): 455-458. |
[6] | Jia Yangjuan, Han Ning, Guo Hui, Li Cancan, Li Jianguo. Value of different clock drawing tests in identifying acute post-stroke cognitive impairment no dementia [J]. Clinical Focus, 2023, 38(2): 143-148. |
[7] | Pang Shu, Zhang Mingkai, Bai Hongmei, Wu Yongdong. Congenital insensitivity to pain with anhidrosis: A case report and literature review [J]. Clinical Focus, 2023, 38(1): 64-67. |
[8] | . [J]. Clinical Focus, 2022, 37(12): 1137-1141. |
[9] | . [J]. Clinical Focus, 2022, 37(8): 748-752. |
[10] | Li Zhongmei, Ran Li, Jiang Yi, Guo Zhiwei, Mu Qiwen. Correlations between sleep disorder and cognitive function in elderly patients with mild cognitive impairment [J]. Clinical Focus, 2022, 37(7): 607-611. |
[11] | Luo Weigang, Yin Yuanyuan, Ren Huiling. Analysis and treatment of primary spinal infection [J]. Clinical Focus, 2022, 37(6): 525-529. |
[12] | Xia Jing, Chen Miaocun, Lin Min, Hao Youguo. Effect of high frequency and low frequency repetitive transcranial magnetic stimulation in the treatment of post-stroke spasticity: A comparative study [J]. Clinical Focus, 2022, 37(5): 427-430. |
[13] | Zhai Xiayin, Lan Rui. Relationship between serum irisin, manganese-containing superoxide dismutase and cognitive function of patients with chronic insomnia [J]. Clinical Focus, 2022, 37(4): 329-333. |
[14] | . [J]. Clinical Focus, 2021, 36(12): 1144-1147. |
[15] | Shen Huinan, Guo Chang, Sun Yimeng, Wang Dongyu. Diagnostic efficacy of cystatin C for vascular Parkinsonism [J]. Clinical Focus, 2021, 36(11): 986-990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||