Clinical Focus ›› 2023, Vol. 38 ›› Issue (6): 559-563.doi: 10.3969/j.issn.1004-583X.2023.06.015
Previous Articles Next Articles
Received:
2023-05-18
Online:
2023-06-20
Published:
2023-08-18
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://huicui.hebmu.edu.cn/EN/10.3969/j.issn.1004-583X.2023.06.015
[1] |
Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209.
doi: S0168-8278(20)30201-4 pmid: 32278004 |
[2] | 薛芮, 范建高. 代谢相关脂肪性肝病新定义的国际专家共识简介[J]. 临床肝胆病杂志, 2020, 36(6): 1224-1227. |
[3] |
Neelis E, de Koning B, Rings E, et al. The gut microbiome in patients with intestinal failure: Current evidence and implications for clinical practice[J]. JPEN J Parenter Enteral Nutr, 2019, 43(2): 194-205.
doi: 10.1002/jpen.1423 pmid: 30070709 |
[4] |
Mu Q, Kirby J, Reilly CM, et al. Leaky gut as a danger signal for autoimmune diseases[J]. Front Immunol, 2017, 8: 598.
doi: 10.3389/fimmu.2017.00598 pmid: 28588585 |
[5] |
Wang R, Tang R, Li B, et al. Gut microbiome, liver immunology, and liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 4-17.
doi: 10.1038/s41423-020-00592-6 pmid: 33318628 |
[6] |
Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: The chicken and the egg[J]. Hepatol Int, 2018, 12(Suppl 1): 24-33.
doi: 10.1007/s12072-017-9798-x pmid: 28550391 |
[7] |
Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders[J]. Gastroenterology, 2020, 159(3): 849-863.
doi: S0016-5085(20)34839-3 pmid: 32569766 |
[8] |
Yoon MY, Yoon SS. Disruption of the gut ecosystem by antibiotics[J]. Yonsei Med J, 2018, 59(1): 4-12.
doi: 10.3349/ymj.2018.59.1.4 pmid: 29214770 |
[9] |
Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases[J]. Front Microbiol, 2016, 7: 1081.
doi: 10.3389/fmicb.2016.01081 pmid: 27462309 |
[10] |
Huang C, Zhou Y, Cheng J, et al. Pattern recognition receptors in the development of nonalcoholic fatty liver disease and progression to hepatocellular carcinoma: An emerging therapeutic strategy[J]. Front Endocrinol, 2023, 14: 1145392.
doi: 10.3389/fendo.2023.1145392 URL |
[11] | Torre P, Motta BM, Sciorio R, et al. Inflammation and fibrogenesis in MAFLD: Role of the hepatic immune system[J]. Front Med (Lausanne), 2021, 8: 781567. |
[12] |
Kansakar U, Trimarco V, Mone P, et al. Choline supplements: An update[J]. Front Endocrinol (Lausanne), 2023, 14: 1148166.
doi: 10.3389/fendo.2023.1148166 URL |
[13] |
Zhang L, Xiong L, Fan L, et al. Vascular lipidomics analysis reveales increased levels of phosphocholine and lysophosphocholine in atherosclerotic mice[J]. Nutr Metab (Lond), 2023, 20(1): 1.
doi: 10.1186/s12986-022-00723-y |
[14] |
Li Z, Agellon LB, Vance DE. Phosphatidylcholine homeostasis and liver failure[J]. J Biol Chem, 2005, 280(45): 37798-37802.
doi: 10.1074/jbc.M508575200 pmid: 16144842 |
[15] |
Mehedint MG, Zeisel SH. Choline's role in maintaining liver function: New evidence for epigenetic mechanisms[J]. Curr Opin Clin Nutr Metab Care, 2013, 16(3): 339-345.
doi: 10.1097/MCO.0b013e3283600d46 URL |
[16] | Lin H, Wang L, Liu Z, et al. Hepatic MDM2 causes metabolic associated fatty liver disease by blocking triglyceride-VLDL secretion via apoB degradation[J]. Adv Sci (Weinh), 2022, 9(20): e2200742. |
[17] |
Heeren J, Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism[J]. Mol Metab, 2021, 50: 101238.
doi: 10.1016/j.molmet.2021.101238 URL |
[18] |
Li X, Hong J, Wang Y, et al. Trimethylamine-n-oxide pathway: A potential target for the treatment of MAFLD[J]. Front Mol Biosci, 2021, 8: 733507.
doi: 10.3389/fmolb.2021.733507 URL |
[19] |
Chávez-Talavera O, Tailleux A, Lefebvre P, et al. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(7): 1679-1694.
doi: S0016-5085(17)30157-9 pmid: 28214524 |
[20] |
Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(3): G554-573.
doi: 10.1152/ajpgi.00223.2019 URL |
[21] |
Cai J, Rimal B, Jiang C, et al. Bile acid metabolism and signaling, the microbiota, and metabolic disease[J]. Pharmacol Ther, 2022, 237: 108238.
doi: 10.1016/j.pharmthera.2022.108238 URL |
[22] |
Paternostro R, Trauner M. Current treatment of non-alcoholic fatty liver disease[J]. J Intern Med, 2022, 292(2): 190-204.
doi: 10.1111/joim.13531 pmid: 35796150 |
[23] |
Mantovani A, Dalbeni A. Treatments for NAFLD: State of Art[J]. Int J Mol Sci, 2021, 22(5):2350.
doi: 10.3390/ijms22052350 URL |
[24] |
Ilyés T, Silaghi CN, Crăciun AM. Diet-related changes of short-chain fatty acids in blood and feces in obesity and metabolic syndrome[J]. Biology, 2022, 11(11):1556.
doi: 10.3390/biology11111556 URL |
[25] |
Cani PD. Human gut microbiome: Hopes, threats and promises[J]. Gut, 2018, 67(9): 1716-1725.
doi: 10.1136/gutjnl-2018-316723 pmid: 29934437 |
[26] |
Li M, Rajani C, Zheng X, et al. The microbial metabolome in metabolic-associated fatty liver disease[J]. J Gastroenterol Hepatol, 2022, 37(1): 15-23.
doi: 10.1111/jgh.v37.1 URL |
[27] |
Christiansen CB, Gabe MBN, Svendsen B, et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(1): G53-65.
doi: 10.1152/ajpgi.00346.2017 URL |
[28] |
May KS, den Hartigh LJ. Modulation of adipocyte metabolism by microbial short-chain fatty acids[J]. Nutrients, 2021, 13(10):3666.
doi: 10.3390/nu13103666 URL |
[29] |
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1744-1754.
doi: 10.1136/gutjnl-2014-307913 pmid: 25500202 |
[30] |
Al Mahri S, Malik SS, Al Ibrahim M, et al. Free fatty acid receptors (FFARs) in adipose: Physiological role and therapeutic outlook[J]. Cells, 2022, 11(4):750.
doi: 10.3390/cells11040750 URL |
[31] |
Nakajima A, Nakatani A, Hasegawa S, et al. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages[J]. PLoS One, 2017, 12(7): e0179696.
doi: 10.1371/journal.pone.0179696 URL |
[32] |
Coppola S, Avagliano C, Calignano A, et al. The protective role of butyrate against obesity and obesity-related diseases[J]. Molecules, 2021, 26(3):682.
doi: 10.3390/molecules26030682 URL |
[33] |
Belcheva A, Irrazabal T, Robertson SJ, et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells[J]. Cell, 2014, 158(2): 288-299.
doi: S0092-8674(14)00736-3 pmid: 25036629 |
[34] |
Ney LM, Wipplinger M, Grossmann M, et al. Short chain fatty acids: Key regulators of the local and systemic immune response in inflammatory diseases and infections[J]. Open Biol, 2023, 13(3): 230014.
doi: 10.1098/rsob.230014 URL |
[35] |
Chen P, Miyamoto Y, Mazagova M, et al. Microbiota protects mice against acute alcohol-induced liver injury[J]. Alcohol Clin Exp Res, 2015, 39(12): 2313-2323.
doi: 10.1111/acer.12900 pmid: 26556636 |
[36] |
Oh JH, Lee JH, Cho MS, et al. Characterization of gut microbiome in Korean patients with metabolic associated fatty liver disease[J]. Nutrients, 2021, 13(3):1013.
doi: 10.3390/nu13031013 URL |
[37] |
Kong L, Chen J, Ji X, et al. Alcoholic fatty liver disease inhibited the co-expression of Fmo5 and PPARα to activate the NF-κB signaling pathway, thereby reducing liver injury via inducing gut microbiota disturbance[J]. J Exp Clin Cancer Res., 2021, 40(1): 18.
doi: 10.1186/s13046-020-01782-w pmid: 33413501 |
[38] |
Davis BT 4th, Voigt RM, Shaikh M, et al. CREB protein mediates alcohol-induced circadian disruption and intestinal permeability[J]. Alcohol Clin Exp Res, 2017, 41(12): 2007-2014.
doi: 10.1111/acer.13513 pmid: 28960346 |
[39] | Kim DH, Jeong D, Kang IB, et al. Dual function of lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: Direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue[J]. Mol Nutr Food Res, 2017, 61(11). |
[40] |
Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1): 276.
doi: 10.1038/s41420-021-00660-4 pmid: 34611144 |
[41] |
Gao H, Jin Z, Bandyopadhyay G, et al. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis[J]. Cell Metab, 2022, 34(8): 1201-1213.
doi: 10.1016/j.cmet.2022.07.006 pmid: 35921818 |
[42] |
Das NK, Schwartz AJ, Barthel G, et al. Microbial metabolite signaling is required for systemic iron homeostasis[J]. Cell Metab, 2020, 31(1): 115-130.
doi: S1550-4131(19)30560-1 pmid: 31708445 |
[43] |
Liu S, Gao Z, He W, et al. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin-linked MAFLD[J]. Free Radic Biol Med, 2022, 193(Pt 1): 213-226.
doi: 10.1016/j.freeradbiomed.2022.10.270 URL |
[44] |
Tong J, Lan XT, Zhang Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis[J]. Acta Pharmacol Sin, 2023, 44(5):1014-1028.
doi: 10.1038/s41401-022-01010-5 |
[45] |
Yang Y, Chen J, Gao Q, et al. Study on the attenuated effect of ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease[J]. Toxicology, 2020, 445: 152599.
doi: 10.1016/j.tox.2020.152599 URL |
[46] | 周响, 韩宇. 益生菌辅助治疗代谢相关脂肪性肝病的临床观察[J]. 中国微生态学杂志, 2023, 35(1): 78-83. |
[47] |
钟明月, 刘春妍, 颜妍, 等. 乳双歧杆菌V9对高脂饮食诱导的NAFLD大鼠的改善作用[J]. 生物技术通报, 2022, 38(3): 181-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0630 |
[48] |
Loman BR, Hernández-Saavedra D, An R, et al. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Nutr Rev, 2018, 76(11): 822-839.
doi: 10.1093/nutrit/nuy031 pmid: 30113661 |
[49] |
Jiang X, Yan C, Zhang H, et al. Oral probiotic expressing human ethanol dehydrogenase attenuates damage caused by acute alcohol consumption in mice[J]. Microbiol Spectr, 2023, 11(3): e0429422.
doi: 10.1128/spectrum.04294-22 URL |
[50] |
Zhi C, Huang J, Wang J, et al. Connection between gut microbiome and the development of obesity[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(11): 1987-1998.
doi: 10.1007/s10096-019-03623-x |
[51] |
An Update on the Efficacy and Functionality of probiotics for the treatment of non-alcoholic fatty liver disease[J]. Engineering, 2021, 7(5): 679-86.
doi: 10.1016/j.eng.2020.01.017 URL |
[52] |
Eickmeier I, Seidel D, Grün JR, et al. Influence of CD8 T cell priming in liver and gut on the enterohepatic circulation[J]. J Hepatol, 2014, 60(6): 1143-1150.
doi: 10.1016/j.jhep.2014.02.011 pmid: 24560659 |
[53] |
Zheng S, Yang W, Yao D, et al. A comparative study on roles of natural killer T cells in two diet-induced non-alcoholic steatohepatitis-related fibrosis in mice[J]. Ann Med, 2022, 54(1): 2233-2245.
doi: 10.1080/07853890.2022.2108894 pmid: 35950602 |
[1] | . [J]. Clinical Focus, 2023, 38(10): 935-939. |
[2] | . [J]. Clinical Focus, 2023, 38(4): 373-376. |
[3] | Cao Yumeng, Zhang Haiyan, Liu Lixin. Correlation between pathological changes and serum ferritin and iron levels in nonalcoholic fatty liver disease: A meta-analysis [J]. Clinical Focus, 2023, 38(3): 197-207. |
[4] | . [J]. Clinical Focus, 2022, 37(9): 846-854. |
[5] | Zhang Limin, Sun Jun. Predictive value of FIB-4 in patients with metabolic-associated fatty liver disease complicated with colorectal adenomatous polyps [J]. Clinical Focus, 2022, 37(4): 334-338. |
[6] | Wen Jie. Correlation analysis between atherogenic index of plasma and nonalcoholic fatty liver disease [J]. Clinical Focus, 2022, 37(1): 35-38. |
[7] | Li Guohuan, Xie Xu, Huang Zhixia, Zhang Mingye, Tang Yunyun. Quantitative evaluation of transient elastography and acoustic radiation force pulse imaging for non-alcoholic fatty liver disease [J]. Clinical Focus, 2021, 36(6): 535-539. |
[8] | Zhang Ying, Wang Chunsheng. Effects of Jiangzhi Ligan Granules combined with simvastatin on hepatic biochemical indexes, leptin and adiponectin in treatment of NAFLD [J]. Clinical Focus, 2021, 36(1): 58-61. |
[9] | Lu Xiaomin;Wang Zhenning;Yang Jun;Cui Zheng. Detection of serum iron in alcoholic and non-alcoholic fatty liver disease [J]. Clinical Focus, 2015, 30(9): 1033-1035. |
[10] | WAN Shun-mei;WU Yong-sheng;ZHU Ping;LI Wan-jun;WAN Ping-xin;YANG Wei-jie;PAN Li. Significance of oxygen free radical metabolism in nonalcoholic fatty liver in high-altitude regions [J]. Clinical Focus, 2014, 29(6): 670-671672. |
[11] | . [J]. CLINICAL FOCUS, 2014, 29(4): 474-477. |
[12] | . [J]. Clinical Focus, 2013, 28(5): 540-542. |
[13] | ZHANG Zi-yu;LUO Wen-ming. Relationship of fatty liver detected by B-ultrasound with serum lipid level and hepatic function [J]. Clinical Focus, 2012, 27(23): 2050-2052. |
[14] | . [J]. Clinical Focus, 2012, 27(22): 1977-1979. |
[15] | . [J]. Clinical Focus, 2012, 27(17): 1512-1513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||